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ABSTRACT 

 This research focuses on the analysis of the flow and heat transfer 
inside a square cavity containing a Bingham plastic fluid. The cavity 
undergoes heating on its left side, where a flexible and elastic fin is 
positioned at the center of this heated wall. Cooling takes place on 
the right side of the cavity, while the upper and lower walls are well-
insulated. The equations governing the complex interaction 
between the fluid and the flexible fin are accurately solved using an 
arbitrary Lagrangian-Eulerian approach, in conjunction with the 
finite element methodology. This study concentrates on the impact 
of the flexible fin on heat transfer in the context of unsteady natural 
convection of a complex fluid with a yield stress inside a square 
cavity. The considered parameters include the variation of the 
Rayleigh number in the range of 103 to 105, the modification of the 
elasticity modulus between 5×1010 and 5×1011, the fin length (Lc) 
from 0.004 to 0.0073, the Prandtl number (Pr) from 0.71 to 100, 
and the variation of the Bingham number from 0 to 20. To provide 
a comprehensive understanding of the observed thermal and fluidic 
phenomena, results will be displayed in the form of isothermic 
contours and streamlines, accompanied by Nusselt number (Nu) and 
maximum stress (𝜎௠௔௫) curves. Observations indicate a significant 
improvement in the Nusselt number in the absence of a yield stress 
(Bn=0), reaching its maximum at (Ra = 105). Conversely, the 
variation of the elasticity modulus shows negligible influence. As 
the yield stress (Bn) increases, it begins to dominate the flow by 
nullifying the buoyancy-induced current, reaching a constant value 
for (Bn=20), corresponding to the conduction limit.                                  
 

© Published at www.ijtf.org 

                          
1. Introduction 

The study of natural convection flow and 
heat transfer within various cavities filled with 
non-Newtonian fluids is an interdisciplinary 

subject of significant interest to researchers in 
the field of fluid dynamics.
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Nomenclature 

B Coefficient of the volumetric thermal 
expansion Greek symbols 

Bn Bingham's number α Coefficient of the thermal diffusivity 
Et Dimensional Young’s modulus μ The fluid’s dynamic viscosity 
Fv Vector of volume force ρ Density 
g Gravity vector τij,  τ0 Extra stress tensor, Yield stress of fluid 
L Characteristic size τ Dimensionless time 
Nu Nusselt number σ The solid stress tensor 
N Dimensionless normal vector θ Dimensionless temperature  
n Normal vector ƞ Apparent viscosity, dimensionless 
Pr Prandtl number ሶ Rate of strain tensor 
Ra Rayleigh number Ψ  Stream function  

t Time ψ  Dimensionless stream function 

T Temperature field Subscripts 

u,v velocity components avg Average 

U,V Dimensionless velocity components c Cold temperature 

  h Hot temperature 

x,y Cartesian coordinates s solide 

X,Y Dimensionless cartesian coordinates f fluid 

  * dimensionless for variables and 
parameters 

Natural convection phenomena play a 
crucial role in numerous engineering and 
applied science domains, such as electronic 
equipment cooling, geothermal applications, 
material processing, heat exchangers, 
lubrication, solar collectors, and more. 
Bingham plastic fluids are an effective method 
to improve the performance and efficiency of 
many industrial and environmental systems, so 
it is essential to understand the rheological 
properties of these fluids in cavities. 

Numerous scientific studies have 
investigated natural convection heat transfer 
using a flexible fin, focusing on the fluid-
structure interaction problem inside the cavity 
[1-6]. They found that flexible fins offer higher 
bends for dilatant fluids, while rigid fins offer 
better stress resistance. Larger baffles increase 
flow resistance and constrain heat transfer, but 
strain increases, and fluctuating heaters reduce 
heat transfer and Nusselt number. Each study 
has explored the impact of fluid-structure 
interaction on temporary free convection in a 
square cavity filled with air, involving a flexible 
horizontal baffle [7]. The results show that the 

bend of the elastic components is reduced, and 
the saved energy within the elastic material is 
transferred to the circulating fluid, reinforcing 
the convective flow for high Rayleigh numbers. 

A numerical study of unstable natural 
convection in a heated slanting enclosure with 
an elastic oscillating fin established on the 
lowest adiabatic wall was conducted [8]. The 
study reveals that the flexible fin's inclination 
angle significantly impacts fluid flow and heat 
transfer in an oblique cavity, with increased 
Young's modulus intensifying convective flow 
and decreasing Nusselt number for t > -4. 

In addition, a smoothed particle element 
method (SPEM) for simulating fluid-structure 
interaction problems with permeable surfaces 
was developed [18,19]. It also demonstrates the 
efficient coupling of ESFEM with SPH through 
a virtual particle scheme. 

However, the unsteady natural convection 
inside diverse cavities using MHD flow, such as 
square cavities [14-16] and circular cavities 
[17], reveals that the magnetic field presence 
affects temperature, membrane shape, and heat 
transfer in cavities. The Hartmann number and 
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magnetic field orientation angle influence 
membrane shape and heat transfer, with 
nanoparticle concentration affecting flow 
strength. 

The problem of unsteady natural 
convection inside enclosures using oscillating 
fins has been studied in the literature [11-13]. 
These studies show that at Ra > 105, flow 
transitions to a fully periodic regime, with 
irregular behavior concerning time. Fluid yield 
stress defers loss of steadiness to higher 
Rayleigh numbers. Maximum heat transfer 
enhancement occurs at suitable parameters 
between aperture size and fin oscillating 
direction. 

In many published works concerning 
porous layers or mediums in enclosures filled 
with non-Newtonian fluid, it has been 
discovered that the overall amount of heat 
transfer increases exponentially with the rise of 
the oscillation amplitude. An enhancement in 
the heat transfer rate of 3.4% might result from 
an oscillation amplitude of 0.1, while the Darcy 
number shows a higher average Nusselt number 
compared to the Darcy-Forchheimer model for 
all studied Rayleigh numbers [9-10]. 

The transitory mixed convection within a 
square enclosure was studied [40-41]. They 
found that cavities with flexible baffles have the 
highest average Nusselt number, with a 
significant influence of the elasticity value on 
the heat transfer rate at small amplitude 
oscillations, in contrast to cavities with rigid 
baffles and without baffles. 

On the other hand, much literature 
concerning heat transfer by laminar free 
convection from an immersed circular cylinder 
in Bingham plastic fluids, square cross-
sectioned cylindrical annular enclosures, and 
rectangular enclosures have been investigated 
[20-26]. The enhanced heat transfer proportion 
due to increased Bn could be more than 
compensated for by the enhanced Rayleigh 
number, with the Nusselt number showing an 
inverse dependence. Therefore, the problem of 
fluid-structure interaction of viscoplastic fluids 
inside different shapes of enclosures, such as a 
square cavity [27], C-shaped enclosure [28], a 
heated sphere in tubes [29], and cylindrical 
enclosure [30], has been explored. These 
studies reveal that the yielded/unyielded 

sections and streamlines intensify with 
increasing buoyancy ratio, Rayleigh number Ra, 
Lewis number, and wavy baffle amplitude 
while decreasing with wave number, while the 
local Nusselt improves with Ra amplification, 
and average entropy and Bejan number reach 
higher values at low Ra. 

The effects of fluid temperature-structured 
viscosity, yield stress, and viscous dissipation 
on natural convection from an isothermal 
surface in a Bingham plastic fluid were studied 
[31]. It was found that the average Nusselt 
number decreases regularly with the Bingham 
number from its maximum value in Newtonian 
fluids (Bn = 0) to its minimum value 
proportional to the conduction limit. 

Although the natural convection of other 
viscoelastic fluids, like Casson fluid [32] and 
Herschel-Bulkley fluid [33-35], has also been 
investigated. These literatures show that heat 
transfer increases with the Hartman number and 
magnetic intensity for cold walls, while the 
Rayleigh number and Casson viscoelastic fluid 
parameters increase velocity profiles. Also, the 
increased generalized Bingham number leads to 
increased unyielded regions, and heat transfer is 
more 

 pronounced for weak values and high 
fluid flow index, and viscous dissipation 
significantly modifies flow and heat transfer 
structures. 

The distinction between precise analytical 
solutions delineating natural and 
thermocapillary convection in horizontal 
single-layer and double-layer devices, 
including Newtonian and viscoelastic fluids, 
was studied [35]. 

In other studies, regarding the mixed 
convection of Newtonian fluid inside many 
enclosures such as a cavity channel [36], a 
square cavity having two inlet and outlet 
openings [37-38], and a square cavity having a 
flexible side wall [39], the heat transfer 
enhancement in a trapezoidal cavity using non-
Newtonian power-law fluids was 
performed[42], and their study reveals that stiff 
fins have higher Nusselt numbers at Re = 300, 
with higher values for shear-thickening fluid 
and shear-thinning fluid at low Ri numbers, and 
fluttering occurs at high Ri and Re numbers. 
Double-diffusive convection of power-law 
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nanofluids within rectangular enclosures using 
the regularized lattice Boltzmann method was 
investigated [43]. The results show that 
increasing nanoparticle volume fraction 
increased the average Nusselt number but 
reduced the average Sherwood number, while 
the average Nusselt and Sherwood numbers 
decreased with the increasing power-law index. 

The influence of temperature-dependent 
characteristics on the natural convection of 
nanofluids in rectangular cavities with 
sinusoidal temperature distribution using the 
lattice Boltzmann method was performed [44-
45], and the results show an optimal volume 
fraction for maximum heat transfer 
enhancement, which increases slightly with 
nanoparticle diameter and remarkably with 
temperature, and the average Nusselt number 
decreases with the power-law index and 
increases with temperature. 

As mentioned earlier, previous studies 
have suggested various directions to deepen the 
understanding of heat transfer properties and 
flow patterns in convection configurations 
involving elastic deflectors and complex fluids. 

This recent study provides new 
perspectives on natural convection inside 
square cavities equipped with elastic deflectors 
filled with a Bingham-type complex fluid. It 
analyzes parameters such as Rayleigh number 
(Ra), elasticity modulus (Et), Prandtl number 
(Pr), Bingham number (Bn), and the length of 
the elastic deflector to evaluate their impact on 
heat transfer. This topic presents promising 
prospects for future applications. The analysis 
includes streamline visualization, isotherm 
profiles, and the determination of average 
Nusselt numbers and σmax to present the results. 

2. Modeling approach: 

2.1 Description of physical model  

The geometry studied in this research, 
illustrated in Figure 1, consists of a 2D square 
cavity of length noted L, filled with a Bingham 
fluid. The left and right walls of the cavity are 
maintained at high temperature Th* and cold 
temperature Tc*, respectively, while the other 
walls remain adiabatic. In addition, an elastic 
flexible fin, with a thickness of tfin, is fixed in 
the central part of the left wall, and this fin is 
also considered adiabatic. Due to natural 

convection, the pushing force causes the 
flexible fin to bend. The no-slip condition is 
applied to all cavity walls, including the outer 
walls and fin surfaces. Temperature variations 
are assumed to be partial. With the exception of 
density, all thermophysical properties are 
considered to be independent of temperature. 

 
Fig . 1 Physical model of the problematic 

2.2 Mathematical equations 

2.2.1 Mathematical dimensional equations 

The dimensional equations modeling the 
hydrodynamic, thermal and elastic 
characteristics of the problem are obtained as 
follows: 
Masse balance 

0
u v

x y

 
 

 
  (1) 

Momentum balance: 
 

                   

f

xyxx

u u u
u v

t x y

p

x x y





         
        

    (2) 
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             
       

  (3) 

 
The energy equation for the fluid: 
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2 2                                

f f
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t x y
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k

x y

          
  

   

  (4) 

Structural displacement of the flexible fin: 

2

2

xysx xx
s vx

d
F

x yt

ss
r

æ ö¶¶ ¶ ÷ç ÷ç- + =÷ç ÷ç ¶ ¶ ÷¶ çè ø
  (5) 

2

2

sy yx yy

s vy

d
F

x yt

s s
r

æ ö¶ ¶ ¶ ÷ç ÷ç- + =÷ç ÷ç ¶ ¶ ÷¶ çè ø
  (6) 

ds denote the displacement vector of the fin 
The Neo-Hookean solid model is applied to 
express the stress tensor   
 
The tensor σ is given by: 

1 TJ FSF-=s   (7-a) 

 With S representing the second Piola-
Kirchhoff stress tensor. It is given by : 

2 ( )s trm l= +S G G I   (7-b) 

With G being the tensor of non-linear 
deformation. It is given by: 

( )1

2
T= -G F F I  

(7‐c) 

The tensor F represents the deformation 
gradient: 

Tw= +


F I   (7-d) 

With λ and μ representing the Lamé coefficients. 
They are respectively given by: 

( )( )1 1 2

En
l

n n
=

+ -
 

(8) 

( )2 1s

E
m

n
=

+
  (9) 

With ν being the Poisson's ratio and E 
representing the Young's modulus of the 
structure.  
The energy equation for the flexible fin: 

2 2

2 2
s s s

s s s

T T T
Cp k

t x y
r

æ öæ ö¶ ¶ ¶ ÷÷ çç ÷÷ çç = + ÷÷ çç ÷÷÷ çç ÷¶ ¶ ¶è ø è ø
  (10) 

P  and  T  are the pressure of the fluid and 
temperature of the solid/ fluid, respectively, g 
the gravity acceleration.  Fv indicates the body 
force imposed on the flexible fin. 𝜌  indicates 
the density where f and s mention to the fluid 
and solid, respectively. αf is thermal diffusivity 
of the fluid, αs  thermal diffusivity of the solid 
and β shows the volumetric thermal expansion 
coefficient of the fluid 

 For a Bingham plastic fluid, the extra stress 
tensor, 𝜏0 is written as follows: 

.

0ij B      if  0ij   

.

0  if  0ij   

(11) 

With: 𝜇஻ is The viscosity of Bingham fluid 
and 𝜇௣ is yielding viscosity 

1

2
ji

ij B
j i

uu

x x
t m

æ ö¶¶ ÷ç ÷ç= + ÷ç ÷ç¶ ¶ ÷çè ø
 

Equation (11) can be simplified using the 
Papanastasiou model for flow 

1(1 )m
B p y

e gm m t g- -= + -    (12) 

With, Eqs. (11) and (12) can be rewritten in 
their dimensionless form as follows 

.
*

.
1ij

Bn 


 
 
  
 
 
 

  (13) 

The viscosity scalar for a Bingham fluid: 
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.

.
*

.

1 exp

1B

Bn m 
 



       
     

  
 

  (14) 

Stream function equation: 

2 2

2 2

u v

y xx y

    
  

  
  (15) 

 
The boundary conditions relevant to the 
external walls and the interface of the flexible 
fin can be expressed as: 

 On the left  wall: (x = 0) : T = Th, u = v 
= 0 

 On the right wall: (x = H): T = Tc, u = v 
= 0 

 On the top and the bottom: ∂T/∂n = 0, u 
= v = 0 

 On  the interface of the flexible fin:   

f s
f s

y y
k k

n n

 


   

2.2.2 Mathematical dimensionless equations 

The governing dimensionless equations are 
obtained through the substitution of a set of 
dimensionless variables given by: 

( , )
( , )

u v L
U V

a
=

, 
( ) ( , , )
, , s

s

x y d
X Y D

L
=

,

2

t

L

a
t = ,  c

h c

T T

T T
q

-
=

-
, 

2

2

pL
P

ra
= , 

*

E

s
s =

 

The governing dimensionless equations are 
hence 
 
Masse balance 

0
U V

X Y

 
 

 
  (16) 

 
Momentum balance: 

 

* *

                   XX XY

U U U
U V

X Y

P

X X Y


 

  
  

  
  

      

  (17) 

 

* *

              PrXY YY

V V V P
U V

X Y Y

Ra
X Y


  

   
    

   
  

    

  (18) 

 
The energy equation for the fluid: 
 

2 2

2 2U V
X Y X Y

    

    

   
    

  (19) 

 
Structural displacement of the flexible fin: 

2 * *

2
sX XX XY

R t t VX

D
E E F

X Y

s s
r

t

æ ö¶ ¶ ¶ ÷ç ÷ç- + =÷ç ÷ç ÷¶ ¶¶ è ø
  (20) 

 
2 * *

2
sY XY YY

R t t VY

D
E E F

X Y

s s
r

t

æ ö¶ ¶ ¶ ÷ç ÷ç- + =÷ç ÷ç ÷¶ ¶¶ è ø
  (21) 

Ds dimensionless displacement vector 

The energy equation for the fin: 

2 2

2 2
s s s

R
K

X Y

q q q
t

æ ö¶ ¶ ¶ ÷ç ÷ç= + ÷ç ÷ç ÷¶ ¶ ¶è ø
  (22) 

Where  R  is the ratio of fluid to solid-structure 

density, and RK  he ratio of the thermal 

conductivity of the fluid to that of the solid 
structure 

s
R

f





   s

R
f

k
K

k
  

*( )f s
v

L g
F

E

 
  
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The Rayleigh and Prandtl numbers, as well as 
the Elasticity modulus, are introduced as : 

2 2
f p

B f

c g TL
Ra

k

 



  (23) 

Pr p Bc

k


  (24) 

*2

2t
f f

E L
E

 


  (25) 

 
The Bingham number is defined as: 
 

2

0

B

L
Bn

t
am

=   (26) 

 
Consequently, the dimensionless viscosity η 
can be written as follows: 
 

.

.

.

1 exp

1B

P

Bn m 
 
 

       
      

  
 

 
(27) 

Stream function equation: 

2 2

2 2

U V

Y XX Y

     
  

  
  (28) 

 
The dimensionless initial boundary conditions 
are given as follows 

 On the left wall: (X = 0) : θ = 1, U = V 
= 0 

 On the right wall: (X = 1): θ = 0, U = V 
= 0 

 On the top and the bottom: ∂θ/∂N = 0, 
U = V = 0 

 On  the interface of the flexible fin:   

s
r r

f s

k k
N N

  


 
 

The non-dimensional heat transfer rates through 
the fluid in contact with the hot wall and the 
flexible fin are, respectively:  

f
h c

k
Nu

T T X


 

 
 (29) 

s rNu k
X


 


 (30) 

The average Nusselt number at the hot wall is 
also introduced as: 

1 2

1 2

1 1

0
2

1

2 2

1

2 2

fin
s s

f s f
fins s

t
s

Nu Nu dy Nu dy Nu dy
t

s

 
  

 
  

 
(31) 

3. Numerical method, grid study, and 
Code validation 

3.1 Numerical solution method: 

Numerical solution methods are employed 
to solve the governing equations and boundary 
conditions for the unsteady natural convection 
flow of a Bingham fluid inside a 2D square 
cavity with an elastic flexible fin. The equations 
are first transformed into a more manageable 
form and then solved using the Galerkin 
Method of Weighted Residuals, which is a type 
of the Finite Element Method (FEM). An 
Arbitrary Lagrangian-Eulerian (ALE) method 
is used to represent the fluid-structure interface 
and accurately capture the motion of the elastic 
fin. The computational domain is discretized 
into triangular, non-uniform elements, allowing 
for an accurate representation of the flow field. 
To handle the nonlinearity of the momentum 
equations, a Newton iteration algorithm is 
employed. The resulting numerical solution 
provides valuable insights into the behavior of 
Bingham fluids under natural convection and 
the potential for using flexible fins to enhance 
heat transfer in a range of engineering 
applications  

3.2 Grid independency check:  

In the field of numerical methods for 
solving physical problems, grid-independence 
tests are conducted to ensure that the results 
remain unaffected by the number of mesh 
elements employed. Within this context, we 
examine the average Nusselt number on the hot 
wall at Ra=105, Et=1010, and Pr=10 for five 
different mesh sizes, as outlined in Table 1. The 
table presents the number of elements used in 
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the fluid domain and the corresponding Nusselt 
number for various mesh sizes in the steady 
state. It can be inferred that the grid with 82,933 
elements (case 4) is suitable for all 
computations conducted in this paper. 
 

Table 1:    grid testing for Nuavg, Ψmax for 
different grid sizes for Et = 5×1010, Ra = 105, Bn 
= 5 

Grid 
size 

Number 
of 
éléments 

Time 
[s] 

Ψmax Nu avg 

Case 1 21013 254 3.12549 1.73105 

Case 2 37143 437 3.13121 1.73237 

Case 3 57890 709 3.13558 1.73349 

Case 4 82933 1225 3.13798 1.73443 

Case 5 97262 1247 3.13897 1.73471 

3.3 Code validation 

In any numerical study, a crucial step is to 
verify the accuracy and validity of the presented 
results. Firstly, the isotherm contours obtained 
by Mohammad Shahabadi et al for the Prandtl 
number (Pr) = 10 and the Eckert number (Et) = 
1010 have been employed to validate the 
findings of the current study. As depicted in 
Figure 2, the numerical results from this study 
exhibit a close agreement with Shahabadi's 
literature. To further verify the numerical 
method and obtained results, the Nusselt 
number is calculated for different Rayleigh 
numbers and compared with those of Shahabadi 
et al [5]. As displayed in Table 2, the maximum 
difference between the current results and those 
obtained by Shahabadi et al [5] is 3.474%. 
These comparisons confirm the accuracy and 
precision of the numerical method used in the 
current study. Although full analyses of the 
findings are provided in the original paper [5] 
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Fig . 2 Comparison of isotherms between 
Mohammad Shahabadi et al [5] and the current 

study for different values of Ra when n = 1,  
Et =1010 ,Pr=10 

 
Table 2 The average Nusselt (Nu) for different 
Rayleigh number at Pr =10 
 
 Nu avg 

Mohammad 
Shahabadi et al [5] 

Présent 
study 

Error % 

Ra =103 1.08949 1.12423 3.474 
Ra =104 1.93385 1.92136 1.249 
Ra =105 4.41245 4.41572 0.327 
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4. Results and discussion 

In this section, we analyze in detail the 
influence of various parameters on thermos-
fluid flow and deformation phenomena within 
the flexible fin. Parameters intentionally varied 
include the modulus of elasticity, ranging from 
5×1010 to 5×1011, the Rayleigh number, 
spanning from 103 to 105, elastic fin length (Lc 
0.004-0.0073), Prandtl number (Pr 0.71-100), 
and the variation of the Bingham number from 
0 to 20. 

It should be noted that certain key 
parameters, such as the dimensionless body 
force (maintained at a constant value of 
Fv=0 )the fixed thermal conductivity ratio 
(kR=100), as well as the constant density ratio 
(ρR=1), are held steady throughout the 
numerical simulations. This is done with the 
aim of isolating the specific influence of the 
aforementioned variable parameters. The 
results of these investigations are presented in 
the form of isothermal contours and vortex 
structures, accompanied by detailed graphs 
representing Nusselt numbers and observed 
deformations. This presentation provides an in-
depth understanding of the phenomena under 
study. 

4.1 Time variation study 

Figures 3 and 4 show the progression of 
the isotherms and streamlines over time for Ra 
= 105, Et = 5 × 1010, Bn = 0, and Pr = 10. At the 
initial stage (𝜏 = 10 ), the flexible elastic fin is 
stationary because conduction is the dominant 
mode of heat transfer. At a later stage (𝜏 = 50), 
fluid motion increases, leading to enhanced heat 
transfer and the movement of the flexible fin 
towards the top of the hot wall. 

As time progresses, between 100 ≤ 𝜏 ≤ 300, 
more disturbances and vortices can be observed 
around the fin, and the isotherms become more 
deviated, indicating that convection is 
becoming more significant along with 
conduction. In the steady state (𝜏 = 2000), the 

flexible fin experiences its maximum shift and 
fluid flow circulation. 

According to Figure 4, at the initial time 
step, two vortices appear, one of a small size on 
the vertical hot wall and the other much larger 
next to the cold wall, due to low heat transfer by 
convection. As time passes, the number of 
vortices decreases, with only one vortex 
remaining next to the cold wall. In the steady 
state, there is always one weak vortex present 
next to the cold wall. 

Figure 5 illustrates the correlation between 
the Nusselt number and the Bingham number 
under the conditions Ra = 105, Et = 5 × 1010, 
and Pr = 10 on the hot wall over time. In the 
initial stage (0 to 10), the impact of the Bingham 
number on the Nusselt number is limited 
because conduction is the dominant mode of 
heat transfer. As time progresses, the influence 
of the Bingham number on the  

average Nusselt number becomes more 
significant. It is noteworthy that when the fluid 
is classified as Newtonian (Bn = 0), heat 
transfer is higher, resulting in a higher Nusselt 
number. Conversely, the average Nusselt 
number decreases as the Bingham number 
increases. This is due to the fact that increasing 
the Bingham number makes the fluid more non-
Newtonian, leading to an increase in viscosity 
with shear rate, hindering the fluid's ability to 
flow, and slowing its flow rate. 

Figure 6 shows the variation of maximum 
stress as a function of time for various Bingham 
numbers at Et = 5 × 1010, Pr = 10, and Ra = 105. 
As observed, the variation in the Bingham 
number has a significant effect on the maximum 
stress and fin deformation. It is remarkable that 
an increase in the Bingham number leads to an 
increase in fin deformation, reaching its 
maximum at Bn = 20. This is because an 
increase in the Bingham number causes a 
blockage of the flow, resulting in an increase in 
the friction coefficient and, consequently, an 
increase in the fin deformation level.
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Fig 3: Development of isotherms and the deformation of the flexible fin with time at 
Ra = 105, Pr = 10, Bn = 0 and  Et = 5×1010
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𝜏  = 1000 𝜏  = 1500 𝜏  = 2000 

Fig . 4. Development of streamline with time at Ra = 105, Pr = 10, Bn = 0 and  Et = 5×1010 
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Fig . 5. The variation of Nusselt number along 
the hot wall with time for different Bingham 

number at Et=5×1010 Ra = 105 and Pr=10 

 
Fig . 6. The variation of the values of maximum 
stress with time for different Bingham number at 

Et=5×1010  Ra = 105 and Pr=10 

4.2 The effects of elasticity modulus: 

Figure 7 demonstrates the impact of 
different values of the elasticity modulus (Et) on 
isotherm contours with varying Bingham 
numbers. It can be observed that at a lower 
elasticity modulus (Et = 5 × 1010), the flexible 
fin bends more easily, and the deformation 
increases with an increasing Bingham number, 
reaching the greatest deformation at Bn = 20. 
Conversely, as the elasticity modulus increases, 
the resistance of the flexible fin also increases, 
resulting in a decrease in its displacement. 

 
 

 
 
Figure 8 examines the influence of the 

modulus of elasticity and Bingham number on 
vortex formation in fluid flow. In a Newtonian 
fluid (Bn = 0), a single large vortex is observed 
near the left wall, decreasing in size as the 
modulus of elasticity increases. On the other 
hand, an increase in the Bingham number and 
the yield stress causes a reduction in the size of 
the vortex. This reduction is due to the 
increasingly non-Newtonian behavior of the 
fluid as the Bingham number increases, leading 
to an increase in viscosity as a function of shear 
rate. This increased viscosity makes it more 
difficult for the fluid to flow, and once the fluid 
starts to flow, its rate of flow is slower than that 
of a Newtonian fluid with the same viscosity. 
As a result, the number of vortices in the flow 
decreases, leaving only a small vortex near the 
cold wall. This vortex decreases in intensity as 
the Bingham number increases (1 ≤ Bn ≤ 20). 

As the Bingham number increases, this 
phenomenon can be interpreted as a transition 
from convection to conduction in heat transfer.  

Figure 9 presents the variation of the 
average Nusselt number on the hot wall for 
different values of the elasticity modulus at Ra 
= 105 and Pr = 10. It can be observed that the 
average Nusselt number decreases as the 
elasticity modulus reduces. Overall, the 
elasticity modulus has a negligible effect on the 
average Nusselt number. The higher average 
Nusselt number is observed in the steady state 
for the higher elasticity modulus (Et = 5 × 1011). 

Figure 10 illustrates the variation of the 
maximum stress as a function of the Bingham 
number for different moduli of elasticity at Ra 
= 105 and Pr = 10. 

It is noticeable that the maximum stress 
and deformation of the fin decrease with the 
increase in the modulus of elasticity. This is due 
to the increased resistance of the fin to 
deformation, leading to a drop in the 
deformation. The maximum value of the 
deformation is noted for Et = 5 × 1010 at Bn = 
20. 
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Fig. 7. Isotherms contours for different values of elasticity modulus (Et) and various Bingham number (Bn)  

at Pr  = 10 at Ra  = 105 
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Fig.  8.  Streamlines contours for various Bingham number (Bn) and elasticity modulus (Et) at P r= 10,Ra = 105 
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Fig. 9.  The variation of Nusselt number along 
the hot wall for different Elasticity modulus at 

Ra=105 and Pr=10 

Fig. 10. The variation of the values of maximum 
stress for different Elasticity modulus at Ra=105 

and Pr=10 

4.3 The effects of Rayleigh number: 

The impact of varying the Rayleigh 
number for different values of the Bingham 
number on the isotherms and streamline 
contours at Et = 5×1010 and Pr = 10 is illustrated 
in Figures 11 and 12. As observed, for a low 
Rayleigh number (Ra = 103), the flexible fin 
remains stationary, and the transfer is supposed 
to be by conduction only. Increasing the 
Rayleigh number (Ra = 104) causes an increase 
in fluid circulation and fin motion, with natural 
convection becoming more intense. At a higher 
Rayleigh number (Ra = 105), natural convection 
becomes the main heat transfer mechanism, and 

it can be seen that the fin reaches its maximum 
displacement for Et = 5×1010 and Bn = 20. 

According to Figure 12, for low Rayleigh 
numbers (Ra = 103), it is possible to notice the 
presence of a single vortex in the center of the 
cavity of the same size for different Bingham 
numbers, and the streamlines are symmetrical 
with respect to the horizontal axis. This 
indicates that conduction is the main 
mechanism of heat transfer. At Rayleigh 
number (Ra = 104), the vortices become more 
important when the fluid is considered 
Newtonian (Bn = 0). Then, for a higher 
Rayleigh number (Ra = 105), the vortex 

formed in the center of the cavity moves 
near the cold wall, and it always remains much 
more important for the Newtonian case. The 
pattern of the streamlines indicates that natural 
convection is the main mechanism of heat 
transfer. 

Figure 13 shows the impact of the 
Rayleigh number on the average Nusselt for 
various Bingham numbers at Et = 5×1010 and Pr 
= 10. It has been observed that the average 
Nusselt number for (Ra = 105) is higher than 
other Rayleigh numbers (Ra = 104) and (Ra = 
103), respectively. It is interesting to note that 
the average Nusselt number increases as the 
Rayleigh number increases. It is essential to 
note that the average Nusselt decreases with an 
expanding Bingham number until it achieves a 
steady incentive for a high Bingham number 
(Bn = 20), showing that the intensity of the heat 
transfer is exclusively through conduction. 

Figure 14 illustrates the variation of the 
maximum stress as a function of the Bingham 
number for different Rayleigh numbers at Pr = 
10 and Et = 5×1010. For Ra = 103, the 
deformation of the fin is negligible. With 
increasing buoyancy forces (Ra = 104), the 
deformation increases until it reaches its 
maximum (Ra = 105). It is interesting to note 
that the deformation also increases with the 
increase in Bingham number. The maximum 
deformation is seen at the steady state for the 
higher Rayleigh number (Ra = 105) and 
Bingham number (Bn = 20)
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Fig. 11. Isotherms contours for various Rayleigh number (Ra) and different values of Bingham (Bn) at Pr = 10 

Et = 5×1010. 
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Fig. 12. Streamline  contours for various Rayleigh number (Ra) and Bingham (Bn) at Pr = 10, Et = 5×1010. 
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Fig. 13.  The variation of Nusselt number along 

the hot wall for different Rayleigh number at 
Et=5×1010 and Pr=10 

Fig. 14. The variation of maximum stress for 
different Rayleigh number at Et=5×1010 and 

Pr=10 

4.4 The effects of Prandtl number: 

Figure 15 displays the effects of the 
Prandtl number (Pr) and different values of the 
Rayleigh number (Ra) on the isotherms in a 
steady state at Bn = 5 and Et = 1011. As 
previously defined, an increase in the Rayleigh 
number indicates an intensification of buoyancy 
forces in the fluid, resulting in a significantly 
greater deformation of the elastic fin. 
Additionally, the isothermal lines move toward 
the fin, indicating an increase in the rate of heat 
transfer. Furthermore, an increase in the Prandtl 
number implies an enhancement in the fluid's 
ability to transfer heat relative to its ability to 
move. It should be noted that maximum 
deformation is observed at high Prandtl values. 
This observation stems from the fact that 

momentum diffusion is more significant than 
heat diffusion when the Prandtl number is 
higher. 

Figures 16 and 17 illustrate the impact of 
the Prandtl number on the average Nusselt 
number and the maximum stress for different 
values of the Rayleigh number, with Bn = 5 and 
Et = 1011. The increase in the Rayleigh number 
leads to heightened buoyancy forces, resulting 
in a significant improvement in the heat transfer 
rate. This improvement is particularly 
noticeable in the values of Nuavg (average 
Nusselt number) and σmax (maximum stress) 
for Ra = 105 compared to Ra = 104 and Ra = 
103. Additionally, the increase in the Prandtl 
number favors improved heat transfer and a 
maximum increase in the deformation of the 
elastic fin, leading to higher values of Nuavg 
and  , particularly for high values of Prandtl. 

4.5 Effect of elastic fin length 

Figure 18 shows the contours of the 
isotherms and streamlines for different lengths 
of the elastic fin, with Ra = 105, Bn = 5, Pr = 
10, and Et = 5 × 1010. A significant observation 
was made: as the length of the elastic fin 
increases, so does the deformation, indicating a 
noticeable intensification of natural convection. 
It should be noted that this increase in 
deformation reaches a maximum peak at LC = 
0.0073. 

The effect of elastic fin length on the time 
variation of the average Nusselt number and 
maximum stress is depicted in Figures 19 and 
20. It can be seen that, as the length of the elastic 
fin increases, the values of the average Nusselt 
number are reduced. This means that the overall 
rate of heat transfer is reduced as the length of 
the elastic fin increases. At the same time, an 
increase in fin deformation is observed as the 
fin length increases, as the stresses exerted on 
the fin increase in proportion to its increasing 
length. 
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Fig. 15. Isotherms contours for various Prandtl number (Pr) and different values of Rayleigh (Ra) at Bn = 5 and 

Et=1011 
 (a) 

 
(b)  

 
Fig. 16.  The variation of Nusselt number (a) , 
maximum stress (b)  for different Prandtl number at 
Et=1011 and Bn=5 Ra= 105 over time 
 
 
 

 
(a) 

 
(b) 

 
Fig. 17.  The variation of Nusselt number (a), 
maximum stress (b) for different Rayleigh number 
at Et=1011 and Bn = 5 
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Fig. 18.  Isotherms and streamlines contours for different values of LC at Bn = 5 Ra= 105 and Et=5×1010  

 

Fig. 19.  The variation of Nusselt number along 
the hot wall for different elastic fin length at Et 
5×1010, Pr = 10 , Ra =105and Bn=5 over time 

 

Fig. 20. The variation of maximum stress for 
different elastic fin length at Et = 5×1010, Pr = 

10 , Ra =105and Bn =5  over time 
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5. Conclusion  

Numerical investigations were carried out 
to explore the natural convective flow of a 
Bingham fluid within a square enclosure, 
utilizing the finite element method. The study 
focused on analyzing the effects of the Rayleigh 
number (Ra) and modulus of elasticity (Et), 
Bingham number (Bn) Prandtl number (Pr)  on 
convective flow and heat transfer. 

The main conclusions of this research can 
be succinctly stated as follows: 

In the absence of a threshold constraint, 
when the fluid is considered Newtonian (Bn = 
0), an increase in the Rayleigh number 
significantly impacts the improvement of the 
Nusselt number, reaching its optimum at Ra = 
105. Particularly, the most pronounced 
deformation of the fin occurs when the elasticity 
modulus is moderate (Et = 5 × 1010). However, 
it is important to note that the elasticity modulus 
has a negligible influence on heat transfer. 

By increasing the Bingham number, the 
effect of the threshold constraint dominates in 
the flow, completely nullifying the buoyancy-
induced flow until the Nusselt number reaches 
a constant value, corresponding to the 
conduction limit. In contrast, the deformation of 
the elastic fin gradually increases with an 
increase in the Bingham number, reaching its 
maximum for (Et = 5 × 1010) and (Bn = 20). 

The analysis of heat transfer reveals a 
positive correlation with the Rayleigh number 
and an inverse correlation with the Bingham 
number. Furthermore, increasing the fin's 
length has a positive impact on the deformation 
phenomenon while showing a slight influence 
on the heat transfer process. Finally, an increase 
in the Prandtl number effectively promotes heat 
transfer while inducing an increase in the 
deformation of the elastic fin. 
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