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ABSTRACT 

 
In this work, the generalized thermoelastic theory was used with 
one relaxation time in the context of (L. S) theory, to investigate the 
magneto-thermoelastic problem of a rotating infinite body with a 
circular cylindrical hole in the existence of a uniform magnetic field 
in the direction of the axis. Constant heat flux is flowing into the 
infinite body from a circular cylindrical hole. The governing 
equations compatible with magnetism and generalized 
thermoelasticity have been formulated. By using the Laplace 
transform and the scalar Laplace inversion, the governing equations 
have been solved. Numerical calculations were performed for the 
studied variables and the obtained results were presented 
graphically. The effect of rotation on temperature is very small, 
while it is very noticeable in the other functions. This study may be 
important in the study of pressure vessels and pipes in nuclear 
reactors, and chemical plants. 
 

© Published at www.ijtf.org 

                          
1. Introduction 

The theory of thermoelasticity deals with 
the effect of thermal and mechanical 
disturbances on an elastic body. The interest in 
it in previous years has led to the emergence of 
a large number of research papers, both 
theoretical and experimental. The importance 
of Thermoelasticity is due to its many 
applications in various fields such as aviation, 
nuclear reactors, modern propulsion system 
technology, plasma physics, and geophysics. 
Lord and Shulman [1] introduced the theory of 
generalized thermoelasticity which is often 
referred to as the theory of generalized 
thermoelasticity with one relaxation time. 

Many papers have been concerned with the 
fundamental considerations of that theory 
Sherief and Khader [2] have obtained the 
solution to the propagation of discontinuities in 
electromagnetic generalized thermoelasticity in 
cylindrical regions, and they are used Boley [3] 
theorem to determine wavefront and speed in 
Laplace transform expressions. Furukawa and 
others [4] have studied the infinite body with a 
circular cylindrical hole. Zenkour and Abbas [5] 
discussed the generalized thermoelasticity 
problem of an annular cylinder with 
temperature-dependent density and material 
properties. Other works on the subject are [6-
17]. The study of the effect of the magnetic 
field is of great interest in technical fields 
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Nomenclature 

J electric current density θ0
 constant 

ε0,  electric permeability H(t) Heaviside unit step function 
μ0 magnetic permeability K0 ,I0 modified Bessel function 
B magnetic induction vectors h0

 induced magnetic in the free space 
D electric induction vectors E0             induced electric fields 
σ0 electric conductivity τ0 relaxation time 
u displacement vector F Lorentz force 
λ, μ Lamé’s modulii  k thermal conductivity 
T absolute temperature cE specific heat at constant strain 

γ material constant ρ density 

T0 reference temperature  

    

because of its applications in industrial 
technology. These applications include cooling 
of nuclear reactors, flow control of liquid metals 
and high-temperature plasmas, power 
generators, drying and solidification of binary 
alloys, and biological transfers. Ezzat and El-
Bary [18] studied the functionally graded 
magneto-thermoelastic half-space with 
memory-dependent derivatives heat transfer. 
Biswas et al. [19] discussed the effect of 
rotation in a magneto-thermoelastic 
transversely isotropic hollow cylinder with the 
three-phase-lag model. Othman and Abbas [20] 
used the finite element method to solve the 
effect of rotation on a magneto-thermoelastic 
hollow cylinder with energy dissipation. Abd-
Alla and Mahmoud [21] discussed a magneto-
thermoelastic problem in rotating non-
homogeneous orthotropic hollow cylinders 
under the hyperbolic heat conduction model. 
Said [22] discussed the deformation of a 
rotating two-temperature generalized magneto-
thermoelastic medium with an internal heat 
source due to hydrostatic initial stress. Kumar 
[23] studied the effect of rotation in the 
magneto-micropolar thermoelastic medium due 
to mechanical and thermal sources. Abo-Dahab 
and Singh [24] discussed the Influences of 
magnetic field on wave propagation in 
generalized thermo elastic solid with diffusion. 
Khader [25] used different theories of magneto 
thermo elasticity for a uniform Laser Pulse for 
a Solid Cylinder. Kumar and Sharma [26] have 
studied thermo mechanical interactions in 
transversely isotropic magneto thermo elastic 

with and without energy dissipation with 
combined effects of rotation, vacuum, and two 
temperatures. Many authors contributed to this 
subject [27-42]. 

 Formulation of the Problem  
We consider the one-dimensional 

generalized thermoelasticity of an infinite body 
with a circular cylindrical hole, whose radius is 
as shown in figure (1). The boundary condition 
is that a constant heat flux flows into the infinite 
body from the hole, but the displacement at the 
hole is constrained. A constant magnetic field 
of strength H0 acts in the direction of the z-axis. 
This produces an induced magnetic field h and 
an induced electric field E. Let (r, φ, z) be 
cylindrical polar coordinates with the z-axis 
coinciding with the axis of cylindrical hole.
  

Maxwell’s equations 

0

0

curl     ,

curl    ,

div  0 , div  0.

t

t





   
   

  



E
h J

h
E

h E 

                         (1) 

Ohm’s law for moving media states that 

 0 0 0t
 

 
     

u
J E H h  .                         

This equation can be linearized by 
neglecting small quantities of the second order 
giving 
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0 0 0t
 

 
    

u
J E H

.

                         (2) 

The displacement u and applied magnetic 
field H0 have the components  

r

0 0

u ( , ), 0,

(0,0,H ).
zu r t u u

H
  


 

The induced magnetic and electric field 
and electric current has the components 

(0,0, ), (0, ,0) , (0, ,0)h E J  h E J . 

The strain components 
1 ( )

,

, ,

0.

rr

zz rz z r

u u ru
e

r r r r
u u

e e
r r

e e e e



 

      
   

   


                         (3) 

The stress tensor σij are given by 

02 ( ),rr

u
e T T

r
   

   


                 (4) 

02 ( )
u

e T T
r        ,                  (5) 

0( )zz e T T        ,                             (6) 

 
 

0r rz z     
.
                                 (7) 

Equations of motion in the presence of magnetic 
field and rotation [24] 

 

2 grad div grad

( ) 2

μ (λ μ) γ T

ρ   

    

    

u u F

u u u
 .(8) 

( ) u is centripetal acceleration due to 

time-varying motion only, 
.

2u  is Coriolis  
acceleration and F is the Lorentz force given by 
[2] 
 F J  B .                            (9) 

Equation of heat conduction  

 
2

2
0 02 Ek T c T T e

t t
  

  
      

 .(10) 

Initial conditions can be written as: 

. .

. .

( ,0) (r,0) T(r,0) T(r,0) 0,

(r,0) (r,0) (r,0) (r,0) 0.

u r u

E E h h

    

    

 

Boundary conditions can be written as: 

0

0 0

( , )
( ),

( , ) 0, .

, ,

T r t
H t

r
u r t at r a

h h E E

  
 

  


               

(11) 

2.  Solution of the Problem 

Equations (1) and (5) can be reduced as 

0

h E
J

r t
       

  ,                       (12) 

0

1
( )

h
rE

r r t
 

 
 

 ,                        (13) 

0 0o

u
J E H

t
 

 
   

 .    (14) 

From equations (13) and (14), by eliminate 
J, we obtain 

0 0 0 0 0

h u E
H E

r t t
            

  .   (15) 

From equations (13) and (15), by eliminat E , 
we obtain 

2
2

0 0 0 0 2

0 0 0

h
t t

e
H

t

   

 

  
     






 .   (16) 

From equations (1) and (9), we obtain 

0 0( ),

0.
r

z

F J H h

F F

 
 

                            (17) 

Take div for both sides of equation (8), 
we get 

2
2 2 2
0 0 0 0 02

2
2 2

2
( 2 ) 2

H H h T
t

e e
e e

t t

   

  

 
      

  
         .

(18) 

Let us introduce the following non-
dimension variables 
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       * * 2
0 0 0 0

* 0
ij

* *
2 2
0 0 0 0 0

* 2
0

0 0 0

, , , t, c t, , 

(T-T )
  , ,

( 2 ) ( 2 )

1
,E , 

2
h , ,  .

ij

E

r u c r u

E
c H c

c
h c

H k

   
 

 
   


  

  
  

 

 
 

   


  

                          

The governing equations (4-6), (10), (13), 
(16) and (18) in non-dimensional form 
become:  

2 22 ( 2)rr

u
e

r
   

   


  ,             (19) 

2 22 ( 2)
u

e
r      

,
                 

(20) 
2 2( 2)zz e          ,                      (21) 

1
( )

h
rE

r r t

 
 

  ,
                        (22) 

2
2 2

2

e
V h

t t t


   
       

  ,                 (23) 

2
2 2 2 2

2 2

2
2

2
2

e V h
t

e
t t

  
 

      
  

      

 ,           (24) 

2
0 11

e

t t t

  
     

          
    .         (25) 

2 2
0 0 0 0 0 0

1 22 2
0

2 2

0 0

, ,  , ,
2

1 ( 2 )
c  ,  

E

T H c
V

c c c

   
  

   
 

  

   



 

 

Laplace transform with parameter s defined by 
the relation 

0

( ) ( ) stf s f t e dt


   

to both sides of equations (19)-(25), we get: 

2 22 ( 2)rr
u

e
r

   
   


 ,              (26) 

2 22 ( 2)
u

e
r

         ,                (27) 

2 2( 2)zz e         ,                       (28) 

1
( )rE sh

r r


 


   ,                     (29) 

2 2 2s V s h s e       ,                        (30) 

 

2 2 2 2 2
2

2 2 2

e V s h

s s e

       

   
,

             (31) 

2 2
0 1s s e          .                     (32) 

from equations (30), (31), and (32), Eliminat 

 , h we obtain 
6 4 2( ) 0a b c e         ,             (33) 

 
  

2 2 2

1 0 2

2

1 1

a s sV s s

s s s



  

    

   
 ,      

    
    

2 2 2
1 0

2 2 2 2
0 2 0

2 1 1

1 2 1

b s sV s s s s

s s s s s s V s s

  

  

         
       

   2 2 2 2
0

4 2
2 0

1 2

(1 )

c s sV s s s

s V s

 

 

    

 
   .  

In a similar manner we can show that  , h   

satisfy the equations  
6 4 2( ) 0a b c h        ,                    (34) 
6 4 2( ) 0a b c           .                  (35) 

The solutions of equations (33)-(35), have the 
forms: 

3

0
1

( )i i
i

e AK k r


       ,          (36) 

23
1 0

02 2
1 0

( )
( )

( ) i i
i i

s s
A K k r

k s s

 





   ,           (37) 

3

02 2
1

( )
( ) i i

i i

s
h A K k r

k s sV


 

.
          (38) 

Where 2 2
1 2,k k and 2

3k can be obtain from the 

Eq. 
6 4 2 0k ak bk c      .              (39) 

From equations (29) and (38), we obtain: 
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23

12 2
1

( )
( ( )) i i

i i i

s
E A K k r

k k s sV


 

.
  (40) 

From equations (3) and (36), we get: 
3

1
1

( )i
i

i i

A
u K k r

k

 
.
               (41) 

From equations (36), (37), (41) and (26), we 
obtain: 

 23
1 02

02 2
1 0

1

1 (1 )
( )

( )

2
( )

i
rr i i

i i

i
i

k s s
A K k r

k s s

K k r
k r

 
 



   
 

 


 



 (42) 

 E0 and h0 in the free space inside the circular 
cylindrical hole satisfy the following equations 

0
02h

V sE
r


 


  ,              (43) 

0 01
( )rE sh

r r


 


    .           (44) 

from equations (43) and (44), by Eliminat
0

E , 
we obtain: 

02 2 2 0V s h        .            (45) 

Solution of Eq. (45) has given by 
0

4 0( ) ( )h A s I sVr    .            (46) 

From Eq. (42) and  (39), we obtain 
0

4
1

( )
( )

A s
E I sVr

V




.
               (47) 

Eq. (11) after tak the Laplace transform, we 
get 

0

0

0

( , )
,

( , ) 0,

h (a,s)  h (a,s),

E(a,s)  E (a,s).

a s

r s

u a s

 
  

 
 
 

               (48) 

Applying the boundary conditions, we obtain 
the fsystem of linear equations in the unknown 
parameters 1 2 3, ,A A A  ,and  4A  

23
1 0 0

12 2
1 0

( )
( )

( )
i

i i
i i

k s s
A K k a

k s s s

  





       ,       (49) 

3

1
1

( ) 0i
i

i i

A
K k a

k

       ,           (50) 

3
0

4 02 2
1

( )
( )

( )
i i

i i

sA K k a
A I sVa

k s sV


  ,            (51) 

23
1 4

12 2
1

( )
( )

( ( ))
i i

i i i

s A K k a A
I sVa

k k s sV V

 
  .   (52) 

Solving equations (49)-(52) to find 

1 2 3, ,A A A  ,and  4A   

 

 

 





0 34 43 22 42 23 44 23 32 22 33
1

0 34 43 23 43 21 44 21 33 23 31
2

0 34 21 42 22 41 44 22 31 21 32
3

0
4 41 22 33 23 32 42 23 31 21 33

43 21 32 22 31

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

m m m m m m m m m m
A

s
m m m m m m m m m m

A
s

m m m m m m m m m m
A

s

A m m m m m m m m m m
s

m m m m m









  



  




  




   


 
2

1 0
1 12 2

0

( )
( ),

( )
 1,  2,  3i

i i
i

k s s
m K k a

k s s
i

 






 

  

 

1
2  1,  2,

( )
,  3i

i
i

K
i

k a
m

k
   

0
3 2 2

34 0

( )
, 1,2,3

( )

( )

i
i

i

sK k a
m i

k s sV

m I sVa


 

 


 

2

4 12 2

44 1

( ) , 1,2,3
( ( ))

1
( )

i i
i i

s
m K k a i

k k s sV

m I sVa
V


 

 




 



34 41 12 23 13 22 42 13 21 11 23

43 11 22 31 22 44 11 22 33 23 32

12 13 23 21 33 13 21 32 31 22

( ) ( )

( ) ( )

( ) ( )

m m m m m m m m m m m

m m m m m m m m m m m

m m m m m m m m m m

    

   

   

 

3. Continuity and Discussion of 
Wave Propagation 
To study the Continuity and Discussion of 

Wave Propagation Boley and Hetnarski 
[3, 43] will used. We found that the temperature 
has three finite discontinuities with respect to r 
on the wave fronts 1 2 3, ,r r r r In these case
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The jumps at these points have magnitudes 

[ 11 ( )
10

a re   ], [ 21 ( )
20

a re   ], and 

[ 31 ( )
30

a re  ]. In the same procedure for the 

other functions, we see that u, h, and E are 
continuous functions for all values of and since 
for all of these functions [2]. 

It should be noted that the first derivatives 
of these functions have finite discontinuities at 
the locations ri. Discontinuity in displacement 
means that one part of the substance penetrates 
into another part, and this contradicts physical 
phenomena. Finally, the stress σ, the same as θ, 
has three finite discontinuities [2]. 

4. Numerical results and discussion 

The material properties are: 
 

10 10
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9 7
0 0

7
0 0 0

10 20 30

7.76 10 , 3.86 10 , 8954,
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
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
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    

   

  

   

  

     

   To compute the values of the functions, a 
numerical procedure was used to invert the 
transforms in the above expressions. First, a 
numerical method based on Fourier expansion 
was used to invert the Laplace transforms 
[44].The FORTRAN programming language 
was used on a personal computer. The accuracy 
maintained was 5 digits for the numerical 
program. The problem was solved for two 
values of time namely for 0.03t   and

0.05t     with constant value of 10  . The 

graphs for the temperature, displacement, stress, 
induced electric field, and induced magnetic 
field are shown in figure (2) – figure (6), 
respectively. Dotted lines represent the solution 
for 0.03t  and solid lines represent the case 

when 0.05t  . 

Fig. (1): Geometry of the problem 
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     In Figures (2, 4), we notice that the heat 
diffusion starts with a large value at the edge of 
the cylinder hole and gradually decreases inside 
the body until it vanishes. The effects of heating 
occupy a bounded region of space adjacent to 
the surface.  
     In Figure 3, we notice that the displacement 
is zero at the edge of the cylinder hole, and this 
applies to the boundary conditions, its value 
increases until it reaches its maximum value 
according to the value of time, and then 
gradually decreases until it vanishes. 
     In Figure 5, we notice that the value of the 
induced electric field is small inside the cylinder 
hole (vacuum), then gradually increases inside 
the body (sold), and then gradually decreases. 
     In Figure 6, we notice that the value of the 
magnetic field is a constant value inside the 
cylinder hole and then gradually decreases 
outside the cylinder. 

We notice from the graphs that the solution 
fulfills the boundary conditions of the problem, 
as the functions have a value at the edge of the 
cylinder and cease as we move away from it. 
This is consistent with the research conducted 
in this field. 

     Figures (7-11) represent the temperature, 
displacement, stress, induced electric field and 
induced magnetic field, for different values of
  , with a constant value of 0.05t    . Dotted 

lines represent the solution for 20   , dashed 
lines represent the solution for 10   , and 
solid lines represent the case when 0 . 
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In figure 7, we notice that the behavior of heat 
does not differ with the effect of rotation. This 
means that the rotation has very little effect on 
the temperature. In Figure 8, we notice that the 
rotation effect is large on the displacement. That 
is, an increase in the value of rotation leads to 
an increase in the value of displacement [9, 10]. 
In Figure 9, we notice that the effect of rotation 
is large around the edge of the cylindrical hole

1.06r   , then the effect of rotation gradually 

fades and the stress behavior is similar
1.06r  . In Figures 10 and 11, we notice that 

as the value of the rotation increases, the values 
of induced electric and magnetic fields increase. 

5. Conclusions 

The electromagnetic generalized 
thermoelasticity problem for a circular 
cylindrical hole under a rotating effect involves 
the study of the interaction between 
electromagnetic fields and thermal effects in a 
cylindrical structure with a hole subjected to 
rotation. This problem combines the principles 
of electromagnetism and thermoelasticity to 
analyze the behavior of the structure under the 
influence of both electromagnetic and thermal 
loads. We can obtain the following conclusions 

based on the above analysis. All quantities 
satisfied the boundary conditions. The values of 
the functions at the edge of the hole are large 
and gradually decrease inside the rigid body. 
The temperature and stress functions have three 
finite discontinuities. The displacement, 
induced electric field, and induced magnetic 
field are continuous functions. The effect of 
rotation on temperature is very small, while it is 
very noticeable on the displacement, stresses, 
induced magnetic and electric fields. The effect 
of rotation on the behavior of physical 
distributions is evident from the data and must 
be considered in manufacturing and design 
processes. This study is of importance in the 
study of structural components and mechanical 
elements such as pressure vessels and pipes in 
nuclear reactors, and chemical plants. 
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