
International Journal of Thermofluid Science and Technology (2023)  

Volume 10, Issue 3, Paper No. 100302 

https://doi.org/10.36963/IJTST.2023100302 

Research  Article                                                                                                                                                

  

*Corresponding e-mail: gangu.honnappa@gmail.com (Gangadharaiah Y H) 

 

Influence of variable viscosity and gravity fluctuation on double diffusive 

convection in a fluid layer with boundary slab of finite conductivity 

Gangadharaiah Y H,  Nagarathnamma H 

 

Department of Mathematics, RV Institute of Technology and Management, Bangalore, India 
Department of Mathematics, Dr. Ambedekar Institute of Technology, Bangalore, India 

 

 

ARTICLE INFO  

 
Received: 31 May 2023; 

Received in revised form: 

07 July 2023; 

Accepted: 09 July 2023; 

Published online:  

14 July 2023 

 
Keywords:  

Boundary slab, 

Soret effects, 

temperature-dependent 

viscosity, 

changeable gravity 

thermal conductivity. 

 

ABSTRACT 

 
The linear stability analysis is carried out for the onset of double-

diffusive convection in a fluid layer with a boundary slab along 

with temperature-dependent viscosity and gravity fluctuation. The 

authors proposed three types of gravity fluctuation. We considered 

three cases of gravity field fluctuation: (a) linear and (b)parabolic 

and (c) cubic. An analytical solution for the subsequent problem is 

acquired through the perturbation technique. The findings 

demonstrate that the viscosity variation parameter, the thermal 

conductivity ratio, the gravity parameter,  the depth ratio, and the 

soret parameter accelerate the start of convection, while the 

increasing Lewis number slow down the convective motion. 

Additionally, the system was found to be more stable for the linear 

type of gravity field fluctuation and more unstable for the cubic 

type of gravity field fluctuation. 

 

 Published at www.ijtf.org 
 

 

1. Introduction 

 

 

  

The investigation of thermosolutal 

convection in a fluid layer is a well-known 

topic in fluid dynamics with numerous 

applications, including biological systems and 

biotechnology Vafai [1], geological processes 

(Straughan [2] and Panfilov [3]), and 

engineering(Wu [4] and Xu et al.[5]). 

Understanding the start of convective 

motion with variable viscosity fluids is thus 

essential for comprehending planetary bodies' 

inner dynamic behavior and thermal 

development. Convective motion with 

temperature-dependent viscosity has technical 

aspects such as chemical and nuclear reactions 

(Baker et al.[6] and Delichatsios [7] ), liquid-

metal batteries (Kim et al.[8] and Nield and 

Kuznetsov [9]), nanofluids (Smith and 

Hammitt [10]), and fire and combustion 

modeling(Siddheshwar et al.[11]).   
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Nomenclature 

T  coefficient of thermal expansion   fluid viscosity 

  fluid viscosity V  velocity  vector  (u, v, w) 

  amplitude of perturbed temperature   Le  Lewis number 

Ck  solutal diffusivity R  Rayleigh number 

W  perturbed vertical velocity p  pressure 

TCD  soret diffusivity k  thermal diffusivity 

  gravity  parameter T  temperature 

0  fluid density D  differential operator d dz  

Sr  Soret parameter  G z  variable gravity function 

Pr  Prandtl number a  horizontal wave number 

B  viscosity parameter C  concentration 

rd  depth ratio Rs  solute   Rayleigh number 

T  coefficient of thermal expansion 
rk  thermal conductivity ratio 

 

The Investigation of such convection 

with changing viscosity fluids is very 

important since a large variety of industrial 

fluids, such as petroleum and ceramics, and 

nanofluids, have changing viscosities 

(Gangadharaiah and Ananda [12], 

Gangadharaiah et al.[13]). While we were 

aware that viscosity could vary due to other 

factors, in earlier research, fluids were 

sometimes assumed to have a constant 

viscosity. A fluid may have a viscosity that is 

temperature-dependent and drops off 

exponentially as the temperature rises 

(Griffiths [14]).  

 

The heat transfer and spatial 

organization of fluid are influenced by 

temperature-dependent viscosity. Few 

scientists have looked into how temperature 

affects viscosity in different kinds of issues. 

The temperature-dependent viscosity effect in 

Benard instability and Marangoni instability 

were both studied by Torrance and Turcotte 

[15], Stengel et al. [16], Kozhoukharova and 

Rozé [17], and Lam and Bayazitoglu [18]. In a 

two-layered system with internal heat 

generation, the influence of temperature-

dependent viscosity has been investigated by 

Gangadharaiah [19]. Shivakumara et al.[20] 

have examined the effects of non-uniform 

basic temperature gradients on surface-driven 

convection with boundary slab. Chaya and 

Gangadharaiah [21] have explored cross-

diffusive terms in double-diffusive penetrative 

convection with changing viscosity. Only a 

few papers discuss how heat conductivity 

caused by plates affects the stability of 

configuration (Gangadharaiah([22]and [23]),  

Suma et al. [24], Ananda et al. [25], Rana et 

al.[26],  Rana and  Thakur[27 and 28] , Rana 

and  Chand [29 and 30], and  Gangadharaiah 

[31]). 

 

Alex and Patil [32] examined the 

gravity fluctuation with internal heating of the 

configuration of the porous bed and discovered 

that a decrease in the gravity factor increases 

the stability of the configuration. Using the 

regular perturbation technique, Suma et al. [33] 

and Gangadharaiah et al. [34] reported the 

impact of linear gravity fluctuation with 

throughflow and internal heating in a porous 

bed configuration. The effects of a changing 

gravity field on porous layers were examined 

by Nagarathnamma et al. [35] using the 

Galerkin approach. The magnetic field and 

throughflow effects on porous bed 

configuration is studied by Yadav [36]. In a 

fluid layer, there has been very little research 

done on the effects of variable gravity. 

Mahajan and Tripathi [37] looked into how 

gravity fluctuation affected the stability of a 

thermosolutal convective flow in a situation 

where convective motion arises from non-

uniformity in the thermophoresis parameter.  
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Very recently,  the penetrative solutal 

convective motion with varying gravity and 

throughflow in a fluid layer was analyzed by 

Gangadharaiah et al. [38]. The study of 

temperature-dependent viscosity with varying 

gravity in the context of cross-diffusive terms 

is critical to understanding the convection 

process in engineering sciences 

(Gangadharaiah et al.([39] and [40]),  

Shivakumara et al.[41], Samart et al.[42], 

Gangadharaiah and Suma [43], Makinde [44], 

Makinde and Mhone [45 and 46] ). 

 

This paper aimed to study the 

temperature-dependent viscosity and boundary 

slab effects on thermosolutal convection in a 

horizontal fluid layer with gravity fluctuation. 

Such examinations may be very helpful to 

crack the problems associated with large‐scale 

flows, such as material processing, Earth's 

crust, atmosphere, ocean, pollutant passage in 

saturated soils, fuel piercing, and crystals 

growing, where throughflow can be vital to 

manage the convective instability.   We have 

considered three types of gravity fluctuation 

and the analytical solution for the eigenvalue 

problem is acquired through the regular 

perturbation technique.   

 

2. Mathematical Formulation 
 

We consider an infinitely extended 

fluid layer at  0z  and ,z d   with a solid 

slab at the bottom having thickness sd , the 

configuration is heated and salted from below 

as demonstrated in Fig1. We assume that the 

viscosity depends exponentially on the 

temperature of the form

 0 0exp ,A T T       and the gravity 

vector g  is,    0
ˆ1 ,g g H z k    which 

spreads with the vertical reverse z-direction. 

The flow governing equations are given 

below(Char and Chen[47]).  

 
Fig. 1. Physical configuration 
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                             (5) 

where  , ,V u v w  is the velocity vector;  

T  is the temperature;   is the dynamic 

viscosity, T is the thermal diffusivity, C   is 

the solute concentration, Ck   is the soluta l 

diffusivity and  TCD is the Soret diffusivity. 

The basic state of the fluid is  

          , , , , , , 0,0,0, , , ,b b b bu v w T p C T z p z C z z 

                                                     (6) 

 

   

 ' ' ' ' ' ' '

, , , , , , 0,0,0, , , ,

, , , , , ,

b b b bu v w T p C T p C

u v w T p C

 






  

                                                                (7)                                                                                                    

On eliminating the pressure term and using the 

above equation, equations(1)-(4) can be  

written as                
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 
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2
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where

3

T

g Td
R



 


  is the Rayleigh number, 

3

C

g Sd
Rs



 


  is the Solutal Rayleigh 

number C

T

Le



  is the Lewis number, 

TS

C

D S
Sr

T





is the Soret number, 

T

v
Pr


  

is the Prandtl number and 2 2 2 2/h z      

is the Laplacian operator with 
2 2 2 2 2/ / .h x y       

 And  

 

max

min

1
exp , .

2
f B z B





   
      

    
    (11) 

 

Normal modes can be defined by the 

perturbations 

 , ,w T C =        
, ,

i lx my
W z z S z e

 
   

       

                                                              (12)                                               
    Substituting the above expression into 

Equations (8) and (10), we obtain:
   

          
              

                                
 

   

      

2
2 2 2 2

2 2 2 2

2

1T S

f D a W Df D a DW

D f D a a R R S G z

   

    

                                                              (13) 

 2 2 0D a W                              (14)  

   2 2 2 21
0rD a S S D a W

Le
         (15)                                                                                      

 2 2 0sD a                                      (16)                                                                                                               

And boundary conditions are 

0W D DS        at       1.z           (17)  

                                                      

0 , , at 0s r sW DC D k D z          

                                                              (18)                                                                                                                                                       

0 at .s rD z d                     (19)   

                                                                                        

Here, r C Tk k k  is the thermal conductivity 

ratio, 
r sd d d is the  depth ratio.   The 

solid-fluid interface becomes  

 tanh .r rD k a a d    at 0z   (20) 

 

3.  Method of Solution 

  

By regular perturbation technique, the 

variables ,W   and S  are expanded in 

powers of 
2a in the form 

     2

0

, , , ,
N

i

i i i

i

W S a W S


               (21) 

Substitution of Eq. (21)  into Eqs.  (13) 15
 

and the boundary conditions  and considering 

like powers of  
2 ,a  we get  zeroth-order 

equations whose solutions are as follows 

0 0 00 0 and 1W S    
  

(22) 

First-order equations  are 
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2

1
B z
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
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 
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 

                      

                                                   (23) 
2

1 11D W                                          (24) 

 

 2 2

1 1 11 1 .rD S S D LeW               (25) 

 

The boundary conditions are  

   1 11 0 0W W                              (26) 

   1 00 0r rD k d                               (27) 

 

The general solution of (23) for three types of 

gravity variation are  
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The compatibility condition  is derived from 

equations (24)  and (25) 

 

   
1

1

0

2 1 1r r r rS Le Le W dz k d S Le       

                             (31) 

1W  is substituted in the equation (31) and the 

critical Rayleigh number is obtained for 

distinct gravity functions. 

 

In the limit 0B  , which is the case of a 

constant-viscosity fluid layer over a solid plate 

of finite thermal conductivity and thickness, 

the expression of critical Rayleigh number 

reduced to 

 320 1 r rR k d                                  (32) 

As  0 or 0r rk d   can be reduced much 

further to the result (Nield [48 and 49]), 

which are well-known ones, achieved 

previously. 

 

4. Results and Discussion 

 

In this paper, the problem of double-

diffusive convective motion in a horizontal 

fluid layer with variable viscosity with gravity 

fluctuations due to the boundary solid slab is 

studied.  Three different types of gravity 

fluctuations force are considered: the linear 

variation   ,G z z   the parabolic variation

  2 ,G z z   and the cubic variation 

  3G z z  . The influence of the solute 

Rayleigh number, the viscosity parameter, the 

Lewis number, the depth ratio, the gravity 

variation parameter, the Soret parameter, and 

the thermal conductivity ratio on the stability 

of the configuration studied. and outcomes are 

presented in Table1 and Figs. 2 to 13.  The 

regular perturbation technique is used to solve 

the eigenvalue problems of linear theory. The 

following conclusions are taken from the 

above study. 

 

The perturbed vertical velocity  W   for 

distinct values of thermal conductivity ratio 

and depth ratio for all three cases of gravity 

fluctuations are shown graphically in Figs 2,3 

and 4. It is seen that the thermal profile 

becomes quadratic in vertical z-coordinate in 

the fluid layer as the values of rk and rd   

increases and velocity flow has maximum in 

the fluid layer in the lower part. 

 

Figures 5,6,7 and 8 demonstrate the 

onset critical Rayleigh number with gravity 

parameter for distinct fixed depth ratio and 

thermal conductivity ratio for gravity 

fluctuations considered. It is noted that with 

increasing gravity parameter, the value of 
cR  

also increases with higher values of thermal 

conductivity ratio and depth ratio.  This is due 

to an increase in gravity parameter declines in 

the gravity force strength. Because of the 

recurrence of the structural disturbance as the 

center of gravity falls, the convective wave's 

onset is delayed. Additionally, it has been 

found that the stability of the structure is more 

consistent for linear gravity fluctuation 

whereas the system is less stable for cubic 

gravity variation(see Table1). 

 

 The effect of the viscosity variation 

parameter with three types of gravity 

fluctuations on the stability of the structure is 

shown in Fig. 9 and Figure 10. It is shown in 

the figures that the critical Rayleigh number 

first rises with the viscosity variation 

parameter, reaches a maximum, and then falls 

with a further rise in the value of B, resulting 

in the separation of three areas as seen in the  

isothermal boundary scenario (see Stengel et al.  

[16]). 
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Figure 11 depicts how the solute 

Rayleigh number and linear gravity variations 

affect the stability of the structure. It is noted 

that from the figure the critical Rayleigh 

number increases as the gravity parameter 

increases.  Further, it is also noticed that the 

configuration is most steady Rs  = 20 when 

compared to Rs  = 0. Figure 12 demonstrates 

the effect of Lewis number   Le  on the 

stability mechanism with linear gravity 

fluctuations case for distinct fixed thermal 

conductivity ratio and depth ratio.  It can be 

observed that the critical Rayleigh number 

falls down when Le  rises. When heat 

diffusivity overcomes mass diffusivity and 

hence lags convection. Figure 13 displays the 

deviance of critical Rayleigh number as a 

function of λ for linear type gravity variation 

for distinct values of Sr . Clearly from Fig.13, 
cR  increases when   increases and thus Sr  

stabilizes the configuration in the stationary 

mode. 
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0.80.50r rk d 
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Fig. 2. Plot of  W   versus    Z  for distinct  
values of  thermal conductivity ratio   and 

depth ratio  for linear gravity fluctuation 

with 50, 0.5,SR Sr  and 0.5.Le   
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Fig. 3  Plot of W   versus    Z for distinct  

values of rk and rd  for parabolic gravity 

fluctuation with 50,SR   0.5,Sr  and 

0.5.Le   
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Fig. 4. Plot of   W   versus    Z for distinct  

values of rk and rd  for cubic gravity 

fluctuation with Rs =50, Sr =0.5 and 0.5.Le   
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Table 1 
cR and   for three types of gravity 

variation with 5,Pe   5,B   50,Rs 

0.5r rk d    and  1.Le   

 

 

 

 

 

 
 

Fig.5 
cR  versus     with 50,SR  0.5,Sr 

0.5,Le  and 10B   for distinct values of  

thermal conductivity ratio   and depth ratio  for 

linear gravity fluctuation. 

 

 

 

Fig.6 cR  versus     with 50,SR   0.5,Sr   

0.5,Le  and 10B   for distinct values of 

thermal conductivity ratio and depth ratio for 

parabolic gravity fluctuation. 

 

 
 

Fig.7 cR  versus     with 50,SR  0.5,Sr 

0.5,Le  and 10B   for distinct  values of  

of   
rk and 

rd  for cubic gravity fluctuation. 
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Fig.8 cR  versus     with 50,SR   0.5,Sr   

0.5,rk   0.5,rd   0.5,Le  and 10B   for 

three types of gravity fluctuations. 

 

 

 
 

Fig.9 cR  versus B    with 50,SR   0.5Sr 

and 0.5Le   for different values of   
rk and 

rd   for linear gravity field.  

 
 
 

 

 
 

Fig.10 cR  versus B    with 50,SR  0.5Sr 

and 0.5Le   for different values of   rk and 

rd   for parabolic gravity field.  

 
 

 
 

Fig.11 cR  versus     with 0.5,Sr  0.5,Le 

and 10B   for distinct  values of   SR  for 

linear gravity fluctuation. 
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Fig.12 cR  versus Le    with 50,SR  0.5,Sr 

and 10B   for distinct  values of   
rk and 

rd    

for linear gravity fluctuation. 

 

 
 

Fig.13 cR  versus     with 50,SR  0.5,Le 

0.5,rk  0.5,rd  and 10B   for distinct 

values of   Sr  for linear gravity fluctuation. 

 

 

 

 

 

 

5.     Conclusions 

 In this study, the problem of the 

onset of double-diffusive convection in a fluid 

layer with the combined effects of changeable 

viscosity, Soret parameter, and gravity 

fluctuations is studied using linear stability 

analysis. Three distinct kinds (linear, quadratic, 

and cubic) of gravity field fluctuations are 

considered for the study. The key outcomes of 

the study are as follows: 

 As the depth ratio and thermal 

conductivity ratio grow, the vertical 

velocity flow increases to its maximum. 

 It has been discovered that the effects of 

increasing , , , ,rB Sr k dr   and Rs  

arriving at lag convection. While Le  is 

responded to enhance the start of 

convective motion. 

 As the influence of the gravity field 

parameter, thermal conductivity ratio, 

depth ratio, Soret parameter, and solutal 

Rayleigh number increases, the size of the 

convective cells diminishes,  while the 

viscosity parameter and Lewis number 

have a dual character on the dimension of 

convection cells.  

 It has been found that for the linear type 

gravity fluctuation, the flow is more stable, 

and for cubic type gravity fluctuation, the 

flow is less stable. 
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