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ABSTRACT 
 

 
The onset of double-diffusive surface tension-driven convective 

motion in a fluid layer overlying a fluid-saturated anisotropic 

porous layer is investigated analytically in the presence of the 

soret effect. We considered boundaries to be insulating to 

temperature perturbations. The governing equation that satisfies 

the composite system is analyzed by the normal mode approach 

and solved by the regular perturbation technique for linear stability. 

By solving coupled equations, a mathematical expression for the 

critical Marangoni number is obtained. Under the effect of the 

anisotropy, soret parameters and the impact of various physical 

parameters on the start of convective motion is illustrated 

graphically, and the stability system is investigated. 

© Published at www.ijtf.org 

 

 

1. Introduction  

 

Convective instability in a two-layer 

system, caused by temperature/concentration 

gradients and associated with 

buoyancy/surface-driven force, occurs in a 

variety of natural and engineering applications, 

including geothermal structures, electronic 

component chilling, defense and space, 

underground nuclear waste containment, 

petroleum extraction, groundwater 

contamination, heat exchangers, and chemical 

production (Vafai [1]; Nield and Bejan [2] ; 

Nield and Bejan [3]; Chen [4] ; Khalili [5] ; 

Suma et al.[6]; Gangadharaiah[7]; 

Shivakumara et al.[8]; Shivakumara et al.[9]; 

Gangadharaiah[10]). 

Marangoni convection is convection 

caused by a surface tension gradient. Even 

slight changes in temperature or solute 

concentration can result in convection since 

surface tension on the free surface is a large 

function of both those variables. The thermal 

diffusion process, commonly known as the 

Soret effect, is induced by a temperature 

gradient. Heating the fluid layer on top of a 

porous bed that is saturated with fluid exhibits 

a number of properties that differ from 

convective motion in a one-layer system with 

or without a gravity field(Chen and  Chen[11] ; 

Chen and Chen[12]; Chen and Chen[13]; 

Kolchanova et al.[14]; Chen and Hsu [15]; Si-

Cheng et al.[16];  Kolchanova and Kolchanov 

[17]).  

 

 
 

http://www.ijtf.org/


Gangadharaiah. 

International Journal of Thermofluid Science and Technology (2023), Volume 10, Issue 1, Paper No. 100102 

2 
 

Convective motion can be induced as 

short-wave rolls in the liquid layer overlaying 

a porous matrix depending on the layer 

parameters (layer thickness ratios, thermal 

conductivity ratios, Darcy number, etc.). In 

this case, the fluid balancing in the layers 

displays bimodal neutral stability curves. 

Convection was explored experimentally in a 4 

cm thick layer of aqueous glycerin mixture 

partially packed with 3 mm glass balls (see 

Chen and Chen[12]). The balls separated the 

layer into two portions, one porous and the 

other non-porous. After the system's 

equilibrium stability was lost, the creation of 

convective structures was seen. The depth ratio, 

which ranged from 0.1 to 0.2, resulted in an 

eightfold shrinkage in their wavelength. 

Platten and Chavepeyer [18]  presented 

the Schmidt-Milverton plots for the solutal 

convection issue for water-methanol and 

water-isopropanol by considering the 

composite system. They have demonstrated 

that expected values and theoretical values are 

consistent throughout the period. 

Gangadharaiah [19] examined double-diffusive 

surface-driven convective motion in a two-

layer system by using the regular perturbation 

approach to solve the associated Eigenvalue 

problem. Sumithra and Komala [20] studied 

the impact of temperature gradients on the 

beginning of solutal convective motion in a 

composite configuration with a free upper 

surface and a stiff lower boundary. Hussam K. 

Jawad [21] looked at natural convective 

motion and the thermo-diffusion effect in a 

composite-layered system. They discovered 

that a positive thermo-diffusion parameter 

implies that the denser component travels 

towards the cooler side of the system, whereas 

a negative sign suggests that the less dense 

component flows towards the colder side. The 

salt finger's convective motion in a composite 

layer with stiff boundaries was examined by 

Komala and Sumithra [22]. Gangadharaiah [23] 

studied salt finger's surface-driven convection 

in a fluid-porous system. Internal heating 

effects on double-diffusive convection in a 

fluid atop a porous layer were studied by 

Gangadharaiah et al. [24]. They used the 

regular perturbation approach to solve the 

resulting Eigenvalue problem and discovered 

that increasing the internal heat sources in both 

layers can stabilize the system. An 

investigation on double-diffusive Marangoni 

convection in the composite binary fluid may 

be used to solidify binary solutions or alloys in 

a gravitational field(Chen[25], Gangadharaiah 

and Suma[26], Chen et al.[27], 

Gangadharaiah[28], Tait and Jaupart[29], 

Gangadharaiah[30], Worster[31] 

Gangadharaiah and Anand[32] and 

Gangadharaiah [33]). A directed upward 

concentration gradient of a solution's heavier 

component arises when it is cooled and 

solidified from below. The increase of 

shortwave perturbations of the immobile state 

causes convective fluid flows in a solution 

layer overlaying a porous bed (mushy zone) 

that arises towards the upper crystal boundary 

(Worster[31]). A crystal is deformed by 

NOMENCLATURE  

a  horizontal wave number 

 

Ms   solute Marangoni number 

D  differential operator d dz  
cM        critical Marangoni number 

          thermal anisotropic parameter p  pressure 

Ck   solutal diffusivity 
Tk     thermal diffusivity 

W     perturbed vertical velocity T    temperature 

Da  Darcy number 
      

   mechanical anisotropic parameter 

    depth ratio V    velocity  vector  (u, v, w)
 

2

h     horizontal Laplacian operator  T   coefficient of thermal expansion
 

2      Laplacian operator    C    concentration
 

Pr     Prandtl number Le      Lewis number
 

Sr      soret parameter     amplitude of perturbed temperature
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convection in the solution and nearby mushy 

zone. The development of double-diffusive 

fingers towards the top edge of the mushy zone 

is caused by short-wave instability. In this 

study, the impact of the soret parameter on the 

salt finger's convective motion in a fluid layer 

overlying an anisotropic porous layer is 

analyzed analytically and the results are 

discussed graphically. 

 

2. Conceptual Model 

 
The system under investigation consists of 

a fluid layer of thickness d  (region1) and 

saturating an underlying anisotropic porous 

layer of thickness 
md  (region2) under zero 

gravity.  Thus the z  indicating distances are 

vertically upward. The fluid-porous interface 

at 0.z   The surface tension   is assumed to 

vary linearly with temperature in the form

 0 0 ,T T T     where 
0  is the 

unperturbed value and 
T  is the rate of 

change of surface tension with temperature. 

 

Fig. 1 Physical configuration 

 

3. Mathematical Formulation 
 

For the proposed scheme, the governing 

equations are: 

Region1: fluid layer   0 z d   

0V   
                       (1) 

  2

0

V
V V p V

t
 

 
      

 
    (2) 

  2T
V T T

t



   


              (3) 

  2 2

c T

C
V C C T

t
 


     


          (4) 

Region2: porous layer   0md z    

0mV   
                 (5)

 

10 m

m m

V
p K V

t







   


              (6) 

   m

m m m m m

T
A V T T

t



    


    (7) 

  2 2m

m m m Cm m Tm m

C
V C C T

t
  


     


    (8) 

The effective thermal diffusivity and 

tensors of permeability are given by
ˆˆˆ̂ ˆ̂( ) ,m mh mvii jj kk     ˆˆˆ̂ ˆ̂( ) .h vK K ii jj K kk     

After linearizing Equations (1)–(8), the 

variables are nondimensionalized using 
2

0, , u

d
T T

d




 and 

0 uC C  as the 

nondimensional variables of velocity, time, 

temperature and concentration in region‐1 and  
2

0, ,m m

l

m

d
T T

d




 and 

0lC C as the associated 

nondimensional variables in region‐2.  For the 

perturbed variables, the dimensionless 

equations are as follows: 

For region-1, 

2 21
0w

pr t

 
   

 
       

        (9)

                              

    

2 T w
t

 
  

 
      

    (10) 

21
h

C
w C

t Le


  


          

(11)

              

     

For region-2, 
2

2

2
0mh m

m m

Da
w

Pr t z


  
    

  
 

  

 (12)

              

                                 

2
2

2 mh m

m

A T w
t z


  

    
  

    

      (13)

   

 

21m

m hm m

C
w C

t Le



  


        

(14) 

Here, / ,Pr    ,
c

k
Le

k


2 2 2 2/ ,h z    2 2 2 2 2/ / ,h x y     

/ ,m m TPr Pr     ,T

c

T
Sr

C








  
m

m

Cm

k
Le

k
 ,  

x

z

K

K
 

 
, ,mx

mz

k

k
   2 2 2 2/ ,m mh mz   

 

2 2 2 2 2/ /mh m mx y     
 
and 2/ mDa K d . 

In order to analyze arbitrary disturbance in 

terms of normal modes, we suppose that the 

perturbations ,w T  and   have the forms 
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          , , , , expw T C W z z z i lx my          

     
 (15) 

 
 

 

        

, ,

    , , exp

m m m

m m m

w T C

W z z z i lx my



   
 

    (16) 

and substituting them in Eqs. 9–14 (with 

0
t





), we obtain the following ordinary 

differential equations: 

In region-1, 

 
4

2 2 0D a W 
                     

(17)
                              

 2 2D a W   
                   

(18) 

   2 2 2 21
rD a S D a W

Le

 
      

 
   (19)

   

In region-2, 

               
 

2 21
0m m mD a W



 
  

                     
(20)

                                           

 2 2

m m m mD a W   
                  

(21)
 

   2 2 2 21
m m m rm m m m m

m

D a S D a W
Le

 
       

 

 
                                                             (22)

 
 

where /D d dz ,
 

2 2a l m  and 
2 2 .ma l m    

The preceding relevant boundary 

conditions have been used to solve these 

ordinary differential equations through using 

the regular perturbation approach, following 

Shivakumara et al.[8] and  Komala and 

Sumithra[20]. 

 

4. Boundary Conditions  
 At  1,z   

2 2 2 0sW D D D W M a M a       

     
                                                                     (23)

  
At  1,mz     

  
 

0m m m m mW D D    
         

(24)
  

At  0,z   

m

T

W W





                          

(25) 

T

m




                                (26) 

S

m




                                (27)                                                                                           

m mD D 

                      

(28) 

m mD D 

                   

  (29)                                                    
4

2 23 m m

T

D a DW D W
Da






   

            

(30)

3
2

m m

T

D D W D W
Da Da

 



 
  

 
        

(31)

   

  

5.  Method of Solution  

 
For the steady temperature and concentration 

flux bounds, convection occurs at minimum 

value of  .a  That is, 

     2

0

, , , ,
N

i

i i i

i

W a W


    
     

(32)

   
2

2
0

, , ,

i
N

m m m mi mi mi

i

a
W W



 
     

 
   (33) 

Substitution of Eqs. (32) and (33) into Eqs. 

 (15) 22
 
and the boundary conditions 

 (23) 31  and considering like powers of  2 ,a  

we get  zeroth order equations whose solution 

are as follows 

0 0 00, , sTW


 
    

         

     (34)

                                                                                        

                 

0 0 00, 1, 1m m mW     
    

      (35)  

The equations at the  first order in  2a  are 
For region-1, 

4

1 0D W 
             

           (36)  

2

1 1
TD W



                        (37)   

 2

1 11 sD Le Sr W



                (38) 

For region-2, 
2

1 0m mD W 
           

          (39)
 
 

 
2

1 1 1m m mD W  
                

(40)

   2

1 11 1m m m m m mD Le Sr W Le Sr         (41) 

and the boundary conditions  (23) 31

become 

1 1 10, 0, 0 1W D D at z        (42)
 

2

1 0 1 (43)sT
sD W M M at z


 
     

1 1 10, 0, 0 1m m m m m mW D D at z            (44)
 
 

And at the interface 
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1 1

1
m

T

W W




  

                        (45) 

1 13

T
m




  

    

                          (46) 

1 12

1
m mD D


  

                     

  (47)  

1 12

1
m mD D


                  (48) 

 

2
3

1 1m m

T

D W D W
Da



 


 

             (49) 

2

1 1 1m m

t

D W DW D W
Da Da

 

  
  (50) 

The general solutions of Eq. (36) and (39) 

are respectively given by                            

 
2 3

1 1 2 3 4W C C z C z C z                       (51)

  1 5 6m mW C C z                             (52) 

where

      
2

1 1 ,m

s T

LeSr
C b



   

 
   
 

1 2

2 2 2

2
,

2

sT
C MLe e b

C


 

 
   
 

 3 4 2

3

5

,
b b C

C
b




 6 3

4

1

T s

m

b C
C

Sr C

   




 ,

 31

5 6, ,
2 (1 2 )

T s

m

CLeC
C C

Sr Sr

   

 


 



2

3

1

2

2

m

m

Le Da
b Sr






 
   
 

   2 2 3 3

2 ,b Le Da Da LeSr         

3

3 2 ,
T

b Da



 

 
   
 

33

4
6

T s

s

Sr DaM
b

  

  

 
  
 
 

 5 1 ,b Le Da    6

2
.

6

T
m

s

Da
b Le



  

 
  

 
 

 

Integrating Eq. 38 and 39    between 0z   
and 1, and Eq. 40 and 41 between 1mz    and 

0, using the relevant boundary conditions and 

adding the resulting equations, we obtain the 

following solvability condition: 

 

  

 

 

1

1

0

20

12

1

1 1
1

2

T m mS

m m

m

Le Sr W dz
Le Sr

Le Sr
W dz

 

 





   

      
    

     








                                                                   (53)          

Back substituting the expressions for 
1W  

and 
1mW into Eq. (53). The critical Marangoni 

number is expressed as the result of integrating 

Eq. (53), which is given by 

 

 

 
 

 

2

2 4

1 1 2 2 3 3 4 4 5 5 6 6 3 72

1

2

T m mS T

c

m m

Le Sr Da

M
Le Sr

C C C C C C

  

  


       



    
  

  


 
       

     

                                           (54) 
         
where 

1

4
1sM

Le


 
  
 

,  
2 2 3

2 2m m

S

Le Sr
M

 

 
   
 

3 2 3

2 2 2

3

S m mM Le SrSr


   

  
     

  
 

 

 
4

2 S m

m

M LeLe

Le


 

  

 
  

  

5 2

2

m

Ms Sr

Le Le Sr Le

 


  
    
   

 

6 2

m

m m m

Sr Ms Sr

Le Le Le




  
    
   

   

2 2

7 2 3

2 2

3 m m m m

Le

Sr Le Le Le

  


 
    
 

. 

 

6. Results and Discussion 

 
In the present work, the impact of soret 

parameter on the surface-driven convective 

motion in a composite layer is analyzed using 

a linear stability approach. The normal mode 

method is used to apply the linear analysis. 

The regular perturbation approach is used to 

tackle the eigenvalue problems derived from 

linear stability analyses. After addressing the 

current problem in which the solute is missing, 

the analytical results are verified (see Table 1). 

The current findings exhibit outstanding 

accordance with the outcomes determined by 

Shivakumara et al. [9] .  The main analytical 

results that will be depicted below are obtained 
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for a composite system with the following 

fixed parameters:   0.389, Darcy number 

33.04 10 ,Da    soret parameters 

0.75, 0.25mSr Sr   , solute Marangoni number 

10Ms   and  Lewis numbers 0.3Le  ,

0.2Lem  . 

Figure 2 shows how the critical 

Marangoni number varies against the depth 

ratio   for various values of Darcy number 

Da  . It is evident that a lowering in Da  would 

result in an increase in the critical Marangoni 

number 
cM  and as a result, it has the effect of 

delaying convective motion. For small values 

of depth ratio,  the 
cM  reaches maximum. The 

curves of for various  Da coalesce for greater 

values of 
cM , on the other hand. 

The influence of anisotropy parameters on 

the beginning of soret-driven convective 

motion is illustrated in Figs. 3 and 4, which 

show the fluctuation across a range of 

mechanical anisotropy and thermal anisotropy 

parameters. As shown in the graphs, 
cM  rise as 

the value of   decreases.  This is due to the 

fact that a drop in n correlates to a lower 

horizontal permeability, which impedes fluid 

transport in horizontal movement. 

Consequently, the region-2 conduction process 

becomes more steady, necessitating larger 

values of  
cM for convection to begin. It can be 

seen in Fig. 4 that for a constant value of  , 

cM , reduces as lowers. This is due to the fact 

that when the horizontal thermal diffusivity 

diminishes, so does the vertical thermal 

diffusivity. The inability of heat to pass 

through the porous layer causes the fluid's 

horizontal temperature variations, which are 

required to maintain convection, to dissipate 

more inefficiently for small  . 

The influence of soret parameters & mSr Sr

on 
cM  is plotted against the depth ratio    in 

Fig5. We observe that 
cM of the insulating 

case is always less than that of the conducting 

case for each of the other parameters' potential 

values.  Thus the effects of soret parameters 

make the composite system stable. 

 The influence of the solutal Marangoni 

number  
sM  on 

cM  with different values of    

is presented in Figs. 6. It's worth noting that 

when the value of 
sM  increases, the 

cM  

lowers. As a result, this component has a 

destabilizing effect, however, the rate of 

destabilization is quite low. And for higher 

values of  , has a more destabilizing effect

destabilization is quite low. And for higher 

values of  , has a more destabilizing effect.  

The influence of mass diffusivity and 

thermal diffusivity of both fluid and porous 

layers on the convective motion is portrayed in 

Fig. 7. It is clear that an increase in Le  and  

Lem   is to enhance the Eigen function 
cM  and 

as a result, it has the effect of hastening the 

beginning of convection. For small values of 

 , 
cM  has significant effect. At higher values 

of  , the curves, on the other hand of 
cM   for 

different Le  and  Lem  decreases. Figure 8 

shows the vertical velocity verses 

eigenfunctions W  and 
mW  for various values 

of and mSr Sr with 0.5 ,   1  , and 

0.003Da  . The existence of 
mSr  has no effect 

on 
mW , however the presence of 2Sr   in the 

fluid layer accelerates W  more than the lack of 

Sr  in the fluid layer. 

Table1 Comparison of  
cM and    with Da  when    = 0.5= , 

T = 0.725,   = 1 and 0SM   

  0.001Da   0.003Da   0.005Da   

Present 

study  
Shivakumara 

et al.[9] 
Present study  Shivakumara 

et al.[9] 
Present 

study  
Shivakumara 

et al.[9] 

0.1 5.178 5.178 3.198 3.198 2.631 2.631 

0.5 68.934 68.934 42.717 42.717 31.999 31.999 

1.0 72.414 72.414 64.118 64.118 58.314 58.314 

1.5 66.136 66.136 62.651 62.651 60.069 60.069 

2.0 62.091 62.091 60.058 60.058 58.567 58.567 

2.5 59.465 59.465 58.055 58.055 57.038 57.038 
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Fig. 2. Variation of 

cM  versus  depth ratio   
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Fig. 3. Variation of 

cM  versus  mechanical 

anisotropic parameter   
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Fig. 4. Variation of 

cM  versus  thermal 

anisotropic parameter   
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Fig. 5. Variation of 
cM  versus  depth ratio   
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Fig. 6. Variation of 

cM  versus  solute 

Marangoni number Ms  
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Fig. 7.  Variation of 
cM  versus depth ratio   
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Fig. 8. perturbed vertical velocity versus 

eigenfunctions with 1   and fixed value of 

other parameters. 

 

7. Conclusions 
The double-diffusive soret-driven 

convective motion in a fluid layer overlying an 

anisotropic porous matrix is studied using 

linear stability analysis.  The following are the 

key conclusions of the linear stability analysis: 

• The influence of a rising Lewis number, 

soret parameters, and thermal anisotropic 

parameters are found to delay the onset of 

convective motion, while solute Marangoni 

number, porous parameter, and mechanical 

anisotropic parameters are adjusted to increase 

the beginning convective motion. 

• With increasing Darcy number, solute 

Marangoni number, and mechanical 

anisotropic parameter, the size of convective 

cells decreases, however, depth ratio has a dual 

nature on the dimension of convective cells. 

•  The depth ratio plays a crucial role in 

the control of the soret-driven convective 

motion in the composite system. 
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