
International Journal of Thermofluid Science and Technology (2022)  

Volume 9, Issue 5, Paper No. 090504 

https://doi.org/10.36963/IJTST.2022090504 

Research  Article                                                                                                                                                 

*
Corresponding e-mail: gangu.honnappa@gmail.com (Gangadharaiah Y H) 

 

Onset of surface driven convection in selfrewetting fluid layer overlying a 

porous medium  

Gangadharaiah Y H   

 

Department of Mathematics, RV Institute of Technology and Management, Bangalore, India 
 

ARTICLE INFO  
 

 
Received: 16 Aug. 2022; 

Received in revised form: 

16 Oct. 2022; 

Accepted: 01 Nov. 2022; 

Published online:  

08 Nov. 2022 

 

 
Keywords:  

bilinear system  

Self-rewetting 

Surface tension. 

 

 

 

 

 

 

ABSTRACT 

 
The onset of thermocapillary convective motion in a self-rewetting 

fluid layer overlying a porous medium with thermally dependent 

surface tension is studied analytically. Surface tension is assumed 

to be a quadratic function of temperature. The top surface of a 

fluid layer is deformably free and the bottom is rigid. We 

considered boundaries to be insulating to temperature 

perturbations. The governing equation that satisfies the composite 

system is analyzed by the normal mode approach and solved by 

the regular perturbation technique for linear stability. A 

mathematical expression is derived for the critical Marangoni 

number by solving coupled equations. The influence of crispation 

number, thermal diffusivity ratio, and other physical parameters 

involved therein are analyzed for the convective stability of the 

bilayer system. It has been found that the start of convection is 

delayed when the crispation number goes down and the thermal 

diffusivity ratio goes up. Also, the impact of the ratio of the 

thickness of the fluid to the thickness of the porous matrix and the 

other physical parameters on controlling the convective motion of 

the configuration is examined in detail. 
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1. Introduction 

Thermal gradients cause surface stresses 

on the free surfaces of fluid flows, which move 

the bulk phase. The Marangoni effect, also 

known as thermocapillary, refers to the 

behavioral motions caused by temperature-

dependent surface tension. Temperature 

variations are used to control the outcome in a 

variety of situations, such as climbing films, 

droplet migration, and convection in closed 

cavities. Benard [1] was the first to conduct 

mathematical experiments and identify a 

pattern of cellular convective instability. 

Pearson [2] explained that surface-tension 

stresses were more important at the 

experimental layer heights, even though 

buoyancy can drive convection in this setup. It 

has a short (finite) wavelength and doesn't 

change the shape of the surface much. Nield [3] 

combined surface tension and buoyancy effects 

and discovered that they reinforce and are 

tightly coupled. Li et al. [4] investigate a layer 

of finite extent and predict multicellular flow 

structure. The thermocapillary movement of 

droplets has been examined in various studies 

in recent years [5-13]. 

 Nield [14] pioneered the research of the 

instability of a fluid-porous bilayer system. 

The initiation of convection in a fluid layer 

overlaying a porous medium layer was 

explored in this research, with the upper 

surface considered to be deformable. Chen and 

Chen [15, 16] investigated the start of finger 

convection in a similar system with a non-

deformable free surface using linear stability 

analysis and experiments. Darcy's law and the 

Beavers-Joseph condition [17] are used in their 

research. It was discovered that the system's 

instability is bimodal and responds 

significantly to changes in the depth ratio h. In 

a similar model, Zhao et al. [18] explored heat 

effects on Rayleigh-B'enard-Marangoni 

instability, pointing out that complex 

phenomena had previously been neglected. 

They discovered that heat transfer at the free 

surface can result in a mode transition of 

convection, which occurs only in a 

configuration with a strong surface tension 

effect. A comparable approach is being 

researched further [19- 28]. 

 Nonlinearity in the connection between 

surface tension and temperature may be seen in 

fluids such as aqueous solutions of higher 

alcohols [29, 30], which differ from the fluids 

in the publications cited above. Cloot and 
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Lebon [31] looked at the instability of a fluid 

with nonlinear temperature-dependent surface 

tension and proposed a second-order 

Marangoni number. The inaccuracy produced 

by neglecting the nonlinear term is also 

explored in their research. In contrast to 

ordinary fluids, the surface tension of self-

rewetting fluids exhibits a positive gradient 

beyond a certain temperature value. The 

experimental results indicate that the use of 

self-rewetting fluids as working fluid 

significantly improves the performance of the 

capillary evaporator by decreasing the casing 

temperature.  

 In this article, the thermocapillary 

convective motion in a porous medium layer 

below a self-rewetting fluid with a deformable 

top surface by the regular perturbation method 

was studied. The influence of crispation 

number, thermal diffusivity ratio, depth ratio, 

and the other physical parameters is studied, 

respectively. 

2. Conceptual Model 

The bilayer system, of which the sketch is 

shown in Fig. 1, comprises a layer of self-

rewetting fluid and a layer of porous medium 

saturated with the same fluid. The system is 

considered two-dimensional and infinite in the 

horizontal direction x. A uniform vertical 

temperature gradient
T

b
t


 


 (b>0) is 

imposed on the system. The surface-tension σ 

exerted at the upper surface is considered to be 

quadratically dependent on the temperature: 

 
2

m mT T      

in which, σm represents the minimum surface 

tension at temperature Tm and γ is a positive 

parameter. 

 

Fig. 1 Physical configuration. 

3. Mathematical Formulation 

For the proposed scheme, the governing 

equations are: 

Region1: For the  fluid layer   0 z d   

Conservation of mass: 

0V   
                                            (1) 

Conservation of linear momentum: 

2

0

1DV
p V

Dt



                                      (2) 

Conservation of energy: 

2DT
T

Dt
                                                 (3) 

Region2: For the porous layer (-dm ≤ z ≤ 0)  

Conservation of mass: 

0mV                                              
(4)

 
Conservation of linear momentum: 

0

1 1m
m m

V
p V

t K



 


   


                  (5) 

Conservation of energy: 

       2
0 0

m
l m m m m l mm

T
c c V T c T

t
   


   


 (6) 

In these equations above, the subscripts 

represent the porous layer. ϕ denotes the 

porosity of the porous layer, K the 

permeability, and c the specific heat capacity. 

We scale the coordinate, velocity ν, pressure p, 

temperature difference T-T0, and time t by d, 

/ d , 2
0 / d  ,  mT b d d   , 2 /d  , 

respectively. 

Perturbations of velocities, pressure, and 

temperature are introduced and the equations 

are linearized thereafter. In order to analyze 

arbitrary disturbance in terms of normal modes, 

we suppose that the perturbations w and θ have 

the forms 

       , , expw W z z i lx my                    (7) 

       , , exp
mm m mw W z z i lx my     

   
   (8) 

The ordinary differential equations,  

In region-1, 

 
4

2 2 0D a W 
                    

               (9) 

 
 

2 2 1

1
D a W

h


  

        
                (10) 

In region-2, 

 2 2 0mD a W                                        
  
(11)

  

 
 

2
2 2

1
m mD a W

h






  

  
                          (12)
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4. Boundary Conditions  

On the upper surface z =1, deformable and 

insulated to temperature perturbation. 

 2 2 0W D D W M a Z      
                 

(13)
 
 

   2 2 2 2
03 0Cr D a DW B a a Z               (14) 

At the fluid-porous interface z =0, normal 

velocity, temperature, heat flux, and normal 

momentum are assumed continuous and 

Beaver-Joseph condition [32] is applied.  

mW W

                                   

(15) 

m                                            (16) 

1
mD D


  

             

(17) 

2 2

2 2

1
3 m mD a DW D W

Da h


  
 

                  (18) 

 
2

m mD D W D W
Da h Da h

   
  

 
           

   

    (19) 

On the lower surface, zm = -h = d/dm, the 

boundary is considered to be rigid and 

insulated to temperature perturbation. 

0m mW D                                              
 
(20)

  
 In the equations above, the dimensionless 

parameters are listed: 

 
 

2

, ,
m m

T dK
Da M

d

 


 


    

where , ,Da M   are Darcy number, Marangoni 

number, and the thermal diffusivity ratio 

respectively. From these equations and 

boundary conditions, an eigenvalue problem is 

formulated, which is solved with the regular 

perturbation method. 

5.  Method of Solution  

For the steady temperature and 

concentration flux bounds, convection occurs 

at a minimum value of a. That is, 

     2

0

, , , , , ,
N

i

m m i mi i mi

i

W W a W W


             (21)

 

 

Substitution of Eq. (21) into Eqs. (9) – (12)
 

and the boundary conditions (13) – (19) and 

considering like powers of a
2
, we get  zeroth-

order equations whose solutions are as follows 

0 00, 1W   

         

                                   (22) 

0 00, 1m mW   
                         

      
 
(23) 

The equations at the  first order in a
2
 are 

For region-1,  

4
1 0D W                                                     

  
(24)

 
 

 
2

1 1

1
1

1
D W

h
   


                      (25) 

For region-2, 
2

1 0mD W 
                          

                   (26) 

2
1 1 1m mD W  

                   
              (27)

 
 

and the boundary conditions(13) –(19) become 

1 1 10, 0, 0 1W D D at z                (28) 

2 3
1 1

0

1 0 1
Cr

D W M D W at z
B

 
    

 
          

 
(29) 

1 10, 0m m m mW D at z h    
     

   (30) 

And at the interface 

1 1mW W                                            (31) 

1 1m                                                       (32) 

1 1

1
mD D


                                               (33)  

3
1 12 2

1
mD W DW

h Da


                                

 

  (34) 

2
1 1 12 2 mD W DW DW

h Da h Da

 
                  (35)  

The general solutions of Eq. (24) and (26) are 

respectively given by 
2 3

1 1 2 3 4W C C z C z C z    
                      (36) 

 1 5 6m mW C C z                                         (37) 

where 

 2 2
0 0

1 2
0 0

24 48

48 2 10 48

B Da B h M
C

B Dah Cr Dah M B Da

 



 


   
 

   2 2
0

2 32 2
0 0 0

48 48
,

48 2 24 24

B h Da M Da h M
C C

B h Cr Dah B B Da

  
 

 
 

   

   2 2
0 0 0

4 52
0 0

48 48 48
,

24 1048

B h M Da B B h M
C C

Cr Dah DaB B Da

 



 
 


 

 2 2 2
0 0 0

6

0

48 48

2

B h B Da M B Da
C

Cr DaB MDa

  



 

The solvability requirement is determined 

by the boundary conditions and differential 

equations for temperature and concentration. 

  1 0

1 1

0

1 1
m

h

h
W dz W dz

 





 
              (38) 

Back substituting the expressions for W1 

and Wm1 into Eq. (38) and integrating the result 

yields an expression for the critical Marangoni 

number Mc, which is given by 
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 

 
0 1

2 3

24 12
c

Da hB
M



 





                             (39) 

where 
2

0
1 22 3

0

481 20
,

24 10

B h Da

Da CrDa B h

 
 



 
      

, 

3 2
0

3 3 3
0

12 12

1

B h Cr h CrDa

Da Cr B Da Dah




 
     

  

6. Results and Discussion 

The unique characteristic of self-rewetting 

fluid is the nonlinear dependence of its surface 

tension to temperature. Unlike fluid in normal 

convection, whose surface tension is supposed 

to be a monotonically linearly decreasing 

function of temperature in most cases, self-

rewetting fluid could shift from one kind of 

behavior to another kind which is different as 

temperature varies. In the case when the 

surface tension of self-rewetting fluid 

decreases as temperature rises, surface 

tractions tend to encourage circulation. 

Figure 2 shows how the permeability of 

the porous layer affects the start of 

thermocapillary convection when χ = 0.7, Cr = 

0.001, β = 0.1 & B0 = 0.1.  It can be seen that if 

Da goes down, the critical Marangoni number 

goes up. This causes the start of Marangoni 

convection to be delayed.  However, as the 

depth ratio h increases, long-wave mode 

emerges instability of the system. As the depth 

ratio h continues to increase, Surface tension 

soon loses its ability to maintain the stability of 

the system and long-wave instability gets 

intensified rapidly as h increases. It is noticed 

that the critical Marangoni number of long-

wave mode is a monotonically decreasing 

function of depth ratio h of long-wave mode 

reaches its minimum at around 20. 

The influence of crispation number on the 

Mc for various depth ratio h is plotted in Fig. 3 

for fixed values of 0.7  , Da = 0.0003, β = 

0.1 & 0 0.1B  . Fig. 3 illustrates that Crispation 

number Cr is a destabilizing factor as the 

marginal stability curves decrease as Cr 

increases. This effect is since a higher  value, 

which indicates a reduced stiffness of the fluid 

layer's free upper surface, makes the 

configuration more unstable. 

The variations in Mc as a function of 

thermal diffusivity ratio χ are shown in Figs. 4  

for Cr = 0.001, 0.0003Da  , 00.1 & 0.1B  

as a function of depth ratio. As can be seen 

from the diagram, increasing the value of χ 

lowers the critical Marangoni number, causing 

the system to become unstable. However, as 

the depth ratio h increases, the critical 

Marangoni number is increased to depth ratio h 

= 10, then it decreases rapidly as the further 

increase of h . 

The effect of χ and β on the critical  

Marangoni numbers cM  is shown in Figure 5 

as a function of Da  for a fixed value of 

0.0003, 0.1, 0.001Da Cr   . It is observed 

that a decrease in Da and   increase in the 

critical Marangoni numbers, and hence makes 

the system more stable. The effect of β, as seen 

from the figure, is insignificant for large values 

of χ. 

The influence of depth ratio h on the 

configuration is demonstrated in Figs. 6 for 

various depth ratio h.  As surface tension is a 

spurring factor, the velocity eigenfunctions for 

both the fluid (W) and porous (W) layers are 

shown in Fig. 6(a), 6(b), 6(c), and 6(d), in 

which the dashed line indicates the fluid-

porous interface. It is observed that the 

convection is greater in the fluid layer, while 

the heat transfer in the porous layer is mainly 

due to conduction. Further, it is noted that the 

onset of convection occurs closer to the 

interface with an increase in the strength of 

downflow. However, the onset of convection 

appears to be shifted towards the top boundary 

as the strength of flow increases.  And also 

noted that as depth ratio h increases, longwave 

mode emerges, which is stimulated by 

perturbation with a comparatively smaller 

wavenumber. Surface tension soon loses its 

ability to maintain the stability of the system 

and long-wave instability gets intensified 

rapidly as h increases.  

The critical Marangoni numbers Mc 

obtained by employing the Beavers–Joseph [30] 

interface conditions for different values of h = 

ζ are presented in Table 1 for comparison. In 

the Table, the critical Marangoni numbers (Mc) 

obtained by the regular perturbation technique 

are given for ordinary fluids. We note that Mc 

values are in very good agreement with those 

obtained by the exact method. 
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Fig. 2. Plot of Mc with h for distinct values of Da 

and fixed value of other parameters. 
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Fig. 4. Plot of Mc with h for distinct values of χ and 

fixed value of other parameters. 

0.000 0.002 0.004 0.006 0.008 0.010
0

500

1000

1500

2000

0 .5 

0 .1 

0.1, 0.5 

D a

cM
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  (c) h = 8 
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(d) h = 10 

Fig. 6. perturbed vertical velocity versus eigenfunctions.
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Table1. Comparison of critical Marangoni numbers 

for Beavers–Joseph (BJ) for ordinary fluids. 

h = ζ Mc (BJ) Mc (present study) 

0.2 23.419 23.421 

0.4 77.872 77.940 

0.6 103.405 103.148 

0.8 103.841 103.683 

 

6. Conclusions 
In this paper, we investigated the surface-

driven convective motion in a self-rewetting 

fluid layer overlying a porous matrix subjected 

to a constant temperature gradient. The 

governing equation that satisfies the composite 

system is analyzed by the normal mode 

approach and solved by the regular 

perturbation technique for linear stability.  Of 

interest are the influences of a quadratic 

relationship of surface-tension, depth ratio h, 

the Crispation number, the Darcy number, and 

the thermal diffusivity ratio χ on the onset of 

thermocapillary instability. The basic findings 

on how to control the onset of surface-driven 

convection in the bilayer fluid-porous medium 

are summarized below:  

 With increasing Darcy number and 

thermal diffusivity ratio parameter, the size of 

convective cells decreases, however, depth 

ratio has a dual nature on the dimension of 

convective cells. 

 Crispation number influences the onset 

of thermocapillary instability. The critical 

Marangoni number decreases as the Crispation 

number rises. 

 An increase in the value of the thermal 

diffusivity ratio parameter decreases the 

critical Marangoni number, causing the system 

to become unstable. 

  The depth ratio plays a crucial role in 

the control of the surface-driven convective 

motion in the bilayer system. 
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