
International Journal of Thermofluid Science and Technology (2022) 
Volume 9, Issue 4, Paper No. 090402 
https://doi.org/10.36963/IJTST.2022090402 

Research  Article                                                                                                                                                 

*Corresponding e-mail: honajacques@yahoo.fr (Jacques Hona) 

 

 

On the behavior of the flow field components from the momentum equation 

for a functioning model of rocket motors      

 
Gabriel Kaldjob Pom

1
, Jacques Hona

1, 
*, Valjacques Nyemb Nsoga

1
, Médard Marcus 

Nganbe II
1
 

 

1Applied Mechanics Laboratory, Faculty of Science, University of Yaoundé I, P.O. Box 812,  
 Yaoundé, Cameroon 

 

ATICLE INFO  

 
Received: 24 Dec. 2021; 
Received in revised form: 
 07 Jul. 2022; 
Accepted: 10 Jul. 2022; 
Published online:  

20 July 2022 

 
Keywords: 
Rocket motor model  
Suction-driven flow  
Navier-Stokes equations  

Nonlinear ordinary differential 
equations 
Numerical solutions 

 

 

 

 

ABSTRACT 

 
 
In this study, a fluid is expelled by the suction process from the 
intermediate space between to porous plates in transverse 
movement in order to model the functioning of a compartment of a 
rocket motor. This transverse motion of the plates can reduce or 

increase the flow domain in order to enhance the performance of 
the motor. From a theoretical point of view which is the present 
contribution, the problem is described by the velocity and the 
pressure gradient known as the flow field components which are 
determined under different values of the Reynolds number and the 
expansion or contraction ratio representing the control parameters 
of the problem. It is found that, the decrease of the magnitude of 
the axial pressure gradient by expanding the space occupied by the 

fluid causes flow reversal in the case of low suction Reynolds 
numbers. The reduction of the flow domain increases the 
magnitude of the axial pressure gradient and destroys the 
backward flow for all the suction Reynolds numbers. This 
reduction or contraction of the flow field causes a linear profile of  
the radial velocity and a linear behavior of the axial pressure 
gradient.  

© Published at www.ijtf.org 

 

1. Introduction 

The movement of liquids and gases is 
widely studied because fluid flows are on the 

basis of the functioning of many natural, 
biological and industrial systems [1-9]. In 
particular, the flows in the vicinity of the 
permeable walls are used to model filtration, 
solar energy collectors, boundary layer 
separation, slab rocket motors, as well as 
biological transport processes. In this context 

of the flows occurring near permeable walls, 

the dynamics of the fluid is influenced by the 
porosity of the flow boundaries. This influence 

is perceptible through the boundary conditions 
of the problem. The porous walls delimiting 
the flow can also be mobile. At this stage, it is 
convenient to consider a global theme that 
consists of three types of fluid flows, notably 
the flows in the vicinity of fixed permeable 
walls [10-12], and the flows in the 

neighborhood of impermeable moving walls   
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Nomenclature 

a half-width of the flow domain, m r solid-to-fluid density ratio 

a0 initial half-width of the flow domain, 
m 

um mean flow velocity through the lateral 
cross-section, m/s 

V 
Vs 

absolute fluid speed at walls, m/s 
relative suction velocity, m/s 

r* 
u* 

nondimensional radial coordinate 
nondimensional radial veocity 

a  displacement velocity of the walls, 
m/s 

w* nondimensional normal velocity 

0a  initial expansion/contraction rate, m/s p* nondimensional pressure 

r radial coordinate, m F nondimensional stream function 
z normal coordinate, m   
t time, s  nondimensional normal variable 

u radial velocity, m/s   volume of the flow domain, m3 

w normal velocity, m/s  specific mass of the fluid, kg/m3 

p pressure, Pa propellant specific mass, kg/m3 

As sum of suction areas, m2 
  kinematic viscosity of the fluid, m2/s 

Ac lateral surface of the cylindrical flow 
domain, m2                                                 

 stream function of the problem, m3/s 

E constant suction coefficient   

    
    
    

[13-15], as well as the flows delimited by both 
porous and moving walls [7, 16-19]. These 

three types of flows form the same set of 
subjects mainly because a seeking solution 
approach called the similarity method [20] can 
be relatively used to solve each of the three 
types of problems taking into account the 
respective geometrical configurations. 
Regarding geometrical configurations, it would 

be interesting to focus the attention on the 
flows through rectangular and cylindrical 
conduits which are most encountered in 
practice. A conduit is said to be rectangular 
when the cross section of the flow is a 
rectangle or a square involving the use of a 
Cartesian coordinate system for the analysis of 
the movement of the fluid. On the other hand, 

the flow takes place in a cylindrical domain 
when it has a longitudinal component and a 
circular cross-section involving the use of a 
cylindrical polar coordinate system for the 
analysis of the dynamics of the fluid. 
 The similarity method first used by 
Berman [20] in the study of the flow of a 

viscous fluid through a rectangular channel 
having two porous walls has been extended to 
the investigation of fluid flows in porous 
cylindrical domains [21-26]. 

The importance of this method of seeking 
solutions has led some authors to consider the 

movements of fluids through rectangular and 
cylindrical domains with porous boundaries as 
Berman flows because Berman's pioneering 
study [20] has inspired many other authors to 
study planar flows [12, 27-29] and cylindrical 
flows [21-26, 30], as well as the stability of the 
flows [31-35]. For the particular case of planar 

flows, that is the flows which generally admit 
two velocity components, notably a 
longitudinal component and a transversal 
component, Berman assumed that the 
transversal or normal velocity does not depend 
on the longitudinal coordinate and that the 
longitudinal velocity depends both on the 
longitudinal and transversal coordinates. It 

appears that, the similarity method of Berman 
used to investigate the two-dimensional 
rectangular channel flow [20] was based on a 
rigorous change of variables relating to the 
geometry of the flow domain and the boundary 
conditions. The Berman approach is 
increasingly used as it validity has been tested 

experimentally and numerically [34-36]. On 
the other hand, other approaches to solve the 
Navier-Stokes equations describing the fluid 
motions exist [37, 38], notably the finite 

Greek symbols 

 expansion/contraction ratio 
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difference methods [39, 40] representing a 
class of numerical techniques for solving 
differential equations by approximating 
derivatives with finite differences. Both the 
spatial domain and time interval are discretized, 
or broken into a finite number of steps, and the 
value of the solution at these discrete points is 

approximated by solving algebraic equations 
containing finite differences and values from 
nearby points. More precisely, finite difference 
methods convert ordinary differential 
equations (ODE) or partial differential 
equations (PDE), which may be nonlinear, into 
a system of linear equations that can be solved 

by matrix algebra techniques. In the search for 
solutions of the Navier-Stokes equations for 
the special case of fluid flows between two 
porous boundaries, scientists increasingly 
prefer to use the Berman similarity method 
[20], because it enables the determination of a 
large number of flow characteristics, compared 

to other existing methods [37-40]. These flow 
characteristics are velocity profiles, the 
pressure, the pressure gradients, the wall 
friction coefficient or the wall shear stress 
coefficient, the stream function, as well as the 
streamlines [12, 21-24]. In fact, the Navier-
Stokes equations [41-44] mathematically 
express the conservation of momentum and the 

conservation of mass for Newtonian fluids. 
They are sometimes accompanied by an 
equation of state relating pressure, temperature 
and density; they are also used to investigate 
complex fluid flows [38] known as the 
movement of fluids associated with chemical 
reactions or in the presence of a magnetic field. 

The difference between the Navier-Stokes 
equations and the closely related Euler 
equations is that the Navier-Stokes equations 
take viscosity into account while the Euler 
equations model only inviscid flows. The 
Navier-Stokes equations are useful because 
they describe the physics of many phenomena 

of scientific and engineering interests. For 
example, they may be used to model the 
weather, ocean currents, water flow in a pipe 
and air flow around a wing. The Navier-Stokes 
equations, in their full and simplified forms, 
help with the design of aircraft and cars, the 
study of blood flow, the design of power 

stations, the analysis of pollution, and many 
other things.  
 The fluid flows between two walls that 
are both porous and in motion can be broken 
down into two sets of problems. The first set of 
previously studied problems concerns the case 
where the movement of the fluid takes place in 

the same direction as the movement of the 
porous walls [16-18]. The second set of 
problems constitutes the case where the two 
porous walls move perpendicular to the 
movement of the fluid [7, 19]. In the two sets 
of problems, the moving porous walls that 
represent the boundaries of the fluid flow may 

be the rectangular surfaces or the lateral 
surfaces of the cylinders. It is in this context of 
the fluid flows between two moving porous 
walls that the present work is situated, with the 
novelty that the two moving porous boundaries 
are the circular permeable plates instead of the 
rectangular surfaces or the lateral surfaces of 

cylinders which characterize previous works. 
The two circular plates translate along the 
same axis passing perpendicular to the 
midpoints of their respective surfaces when the 
flow takes place in their intermediate space 
with a suction phenomenon at their porous 
walls. Indeed, the suction phenomenon is the 
removal of mass of fluid from the porous 

geometric domain containing the moving fluid. 
The phenomenon contrary to suction is the 
injection [45] which characterizes the mass 
addition of fluid in the flow field. The flow 
studied in the present work incorporates the 
phenomenon of suction by assuming that the 
mass of fluid exiting the flow domain is equal 

to that entering it. In this case, the flow is 
described by applying the conservation of 
mass and the conservation of momentum. The 
conservation of mass leads to the continuity 
equation, while the conservation of momentum 
gives rise to the Navier-Stokes equations. 
Moreover, the translational movement of the 

porous circular plates that we consider in this 
work has the geometric consequence of 
reducing or increasing the volume of the flow 
domain. More precisely, the translational 
movement of the discs can move them away or 
closer together causing respectively an 
increase or a reduction in volume of the flow 
domain. At this stage, it is convenient to note 
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that the purpose of this study is the 
determination of the influences of the porosity 
of the flow boundaries and the increase or 
decrease in volume of the flow domain on the 
characteristics of the fluid movement. The 
attention is focused on the characteristics that 
intervene directly in the equations governing 

the problem, notably the velocity components 
and the pressure gradient which describe the 
continuity equation and the Navier-Stokes 
equations. The determination of these 
characteristics of the flow results from an 
organization of this work which considers the 
present introduction as Section 1. The 

presentation of the governing equations 
associated with the description of the geometry 
of the flow is the subject of Section 2. Section 
3 is devoted to the similarity transformation of 
the governing equations and the introduction 
of nondimensional variables. The numerical 
results are presented and discussed in Section 4. 

The conclusion intervenes in Section 5. 
 

2. Mathematical description  

The problem is similar to a two-

dimensional flow described by a velocity 

component parallel to the walls of the circular 

surfaces called the radial velocity u, and 

another velocity component perpendicular to 

the surfaces of the discs known as the axial or 

normal velocity w, as well as the pressure field 

p related to the two velocity components due 

to the momentum conservation. Due to the 

described geometry of the movement of the 

fluid, it appears that the flow is axisymmetric 

and the coordinate system (r, z) is derived to 

model the dynamics of the fluid between two 

circular plates or discs situated at z = -a(t) and 

z = +a(t) as shown in Fig. 1. Hence, 2a(t) is the 

distance between the plates and a(t) denotes 

the half-width of the flow domain depending 

on the time t. As the fluid moves in the space 

between the two porous plates, a mass of fluid 

is expelled through the pores of these plates at 

the absolute speed V that depends on the 

relative suction velocity Vs and the 

displacement velocity of the porous walls a  

 

                   

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Sketch of the flow domain   

 
defined by dtdaa / , such that: 

 

aVV s
      (1) 

 

The displacement velocity a  of the 

porous walls also known as the entrainment 
velocity of fluid particles near the permeable 
surfaces is positive in the expansion case and 
negative for contraction. 

By neglecting gravity terms [21-26] due 
to the fact that the fluid layer between the 
circular surfaces and the width of the flow 

domain are small compared to the same radius 
of the discs which tends to infinity, the 
equations of motion are given by: 
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where  and  denote respectively the specific 

mass and the kinematic viscosity known as the 
physical properties of the working fluid. The 

 
z 

z = a 

z = -a 

da/dt 
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problem is stated such that, the radial motion of 
fluid particles vanishes in the close vicinity of 
the porous walls, that is the no slip condition. In 
addition, the fluid is equally distributed on the 
both sides of the circular midsection of the flow 
domain known as the open wall situated at z = 0, 
that is the sandwiched flow. Finally, as the 

problem pertains to a sandwiched flow, equal 
suction fluxes of fluid need to be considered at 
both porous walls. This description gives rise to 
the following boundary conditions: 
 
u = 0,     w = +V  for z = a(t) 

0




z

u
,    w = 0,             for  z = 0  (5)  

u = 0,     w = -V  for z = -a(t) 

 
The two discs are uniformly porous such that 
As is the sum of the suction areas defined by: 

222 2 rrrAs   . By referring to the 

application of the active propellants with 0 as 

the propellant specific mass, the conservation 
of mass at the burning surface As, expressed as 

aAVA sss


0
   [7, 46], gives birth to the solid-

to-fluid density ratio 





0r  related to the 

relative suction velocity Vs at walls by the 

following expression:
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












 0 . 

Considering Eq. (1), the absolute fluid 
withdrawal speed V and the fluid particle 

entrainment velocity at walls a are related as 

follows:
 

  aEarV   1 , where 1 rE  

is the constant suction coefficient estimated for 

example in rocket motors to be E = 99 for a 

typical 
3

0 kgm 2000  and
3kgm 20   [7, 

46-48]. On the other hand, the volume of the 
flow domain which is a cylinder of radius r 
and of length 2a is defined as:

 
rAar c

2

1
22   , where Ac is the lateral 

surface of the cylindrical flow domain given 

by: raarAc  4)2(2  . At this stage, it is 

important to note that the mass of fluid which 
enters the flow domain with the mean velocity 
um through the lateral cross section Ac is 
expressed in terms of the remaining mass and 

the mass exiting the flow field through the 
suction area As, this leads to the flow rate 
equation: 
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the volume of the flow field rAc
2

1
 , Eq. (6) 
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As the flow rate equation is established at 

a given radius r, this leads to the following 
equation: 

 

ss
c

cm AV
t

A
rAu  





2

1
   (8) 

 
It is relevant at this stage to define the 

mean flow velocity um as follows: 
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Considering the expressions of the 

surfaces raAc 4  and 
22 rAs  , another 

expression of the mean velocity is: 
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In light of Eq. (1), a simplified expression 
of um is: 

 

V
a

r
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2

1
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Equation (11) shows that the mean flow 

velocity um depends on the radius of the discs, 

the width of the flow domain and the absolute 

suction speed at porous walls. 

 The fact that the flow field of the 
incompressible fluid presents two velocity 
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components involves the existence of the 
stream function  defined as:  

 

zr
u






1
, 

rr
w






1
   (12) 

 
  It is important to note and easy to verify 

that, as the stream function exists, the 
continuity Eq. (2) is self satisfied. On the other 
hand, the two Navier-Stokes Eqs. (3) and (4) 
are transformed into a single equation of 
vorticity describing the same problem as: 
 

     



































 222 1

D
zr

D
rzr

D
t

 


 42

2

2
DD

zr





     (13) 

where 






















rrr
r

z
D




1
2

2
2

. The 

boundary conditions related to Eq. (13) are 
derived: 
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3. Transformation of the vorticity   

equation 

 
This stage is devoted to the 

transformation of the partial differential Eq. 

(13) into an ordinary differential equation for 

the same problem by means of a similarity 

method as follows:   
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deriving from the displacement of the flow 
boundaries called the expansion or the 
contraction ratio is introduced. The parameter
 is positive in the expansion case and 

negative for the contraction. The boundary 
conditions (17) are established whatever the 
time t. Equation (16) subject to boundary 

conditions (17) needs an initial condition to be 
solved, but this initial condition does not 
interest the dynamics discussed in the current 
work, because the similarity problem in space 
presented in Eqs. (16) and (17) is only a step of 
passage to obtain a problem described by an 
ordinary differential equation by assuming that 
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 in order to obtain a similarity solution 
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constant value of the suction coefficient E. In 
the present study, the constant value of E is not 
given, because this work does not concern a 
particular fluid, but it is a general contribution 
to a better understanding of incompressible 
fluid flows between two expanding or 
contracting porous walls in the model of rocket 

motors. In fact, two types of motions are 
combined in the current study, notably the 
movement of the discs and the movement of 
the fluid. Hence, the parameter  can be 

considered as a sort of Reynolds number 
related to the displacement of the circular 
porous plates. As F,  and R do not explicitly 

depend on time t, the problem to solve 
becomes:   
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In the current flow configuration, the 

radial velocity is made dimensionless by 
means of the mean flow velocity um and the 
axial velocity is determined in unit of the 

absolute suction speed V, such that: 

RF
u

u
u

m

/)(* )1(  , RF
V

w
w /)(* 

     
(21) 

In this work, obtaining the vorticity equation 
satisfied by the stream function involves the 
disappearance of pressure terms of the 
momentum equation. However, since the 
stream function is related to the velocity 

components by assuming the incompressibility 
of the working fluid, the similarity expression 
corresponding to the radial pressure gradient 

per unit radius can be derived by substituting 
Eqs. (20) into Eq. (3) as follows: 
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The half-width of the flow domain a is 

used to normalized the lengths, such that: r* = 

r/a and azz /*  . In addition, the pressure 

is made dimensionless by the reference 

pressure )( 2V  as p* = p/ )( 2V . This leads 

to define the nondimensional radial pressure 

gradient per unit radius by the formulas: 
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Equation (23) reveals that the 

nondimensional radial pressure gradient per 
unit radius is constant inside the flow field as it 

is equivalent to the integral form of Eq. (18) at 
a given Reynolds number. On the other hand, 
the expression of the axial pressure gradient in 
terms of function F and its derivatives is 
obtained by introducing the formulas (20) in 
Eq. (4) as follows: 
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 (24) 

 
Considering the references of lengths a 

and pressure )( 2V , such that   = z/a and p* 

= p/ )( 2V
 the nondimension axial pressure 

gradient is given by: 
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In this work, as the function F derives 

from the stream function by similarity 
transformation, the incompressibility of the 
fluid that relates the function  and the 
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velocity components involves also the 
relationships of the function F with the radial 
and normal velocities. On the other hand, the 
expressions of u  and w in terms of F involves 
the definitions of the radial pressure gradient 
per unit radius and the normal or axial pressure 
gradient in terms of the function F and its 

derivatives by using the Navier-Stokes 
equations.  
 

4. Results from the numerical 

integration and discussion 
 

The numerical solution is obtained by 

integration of Eq. (18) and boundary 

conditions (19) using the shooting method 

associated with the fourth-order Runge-Kutta 

scheme [49]. As the sandwiched flow develops 

in a symmetric domain, Eq. (18) is solved in 

the interval [0, 1] considering the boundary 

conditions: 

 

0)1()1( F , RF  )1(
  
for  1  

0)0()2( F ,     0)0( F     for  0  (26) 

 
The global solution in the entire flow 

domain [-1, 1] is derived by symmetry. In this 
paper, the numerical results pertain to the flow 
characteristics which directly influence the 
momentum conservation, notably the profiles 
of the radial velocity and the axial or normal 

velocity, as well as the normal pressure 
gradient. These flow characteristics derive 
from the Navier-Stokes equations that express 
a relationship between inertia, viscous and 
pressure terms in the absence of gravity forces 
as the width of the flow domain is small. 

 

4.1 Radial velocity profile 
 

The radial velocity is presented in Figs. 

24 for different values of the control 

parameters of the problem. Indeed, for a fixed 
low Reynolds number as shown in Fig. 2, flow 
reversal also known as the backward flow 
manifests inside the flow domain for large 
expansion ratio. At this stage, it is convenient 
to note that the expansion is considered to be 

large with respect to the value of the Reynolds 

number. This means that the primary direction 
of motion of the flow changes as the expansion 
ratio is relatively important compared to the 
Reynolds number as shown in Fig. 2. 

 
Fig. 2. Radial velocity component for a fixed 
low Reynolds number R = 1, under different 

values of the expansion or contraction ratio. 
 

More precisely, the expansion 
corresponds to positive values of the 
nondimensional parameter  , while the 

contraction pertains to negative values of this 
parameter. It follows that Fig. 2 is performed 
under different values of the expansion and 

contraction ratios at a fixed low Reynolds 
number. 

 

 
Fig. 3. Radial velocity component for a fixed 
Reynolds number R = 20, under different 
values of the expansion or contraction ratio. 
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Large expansion which results from the 
increase in volume of the flow domain causes 

 
Fig. 4. Radial velocity component for a fixed 
Reynolds number R = 50, under different 
values of the expansion or contraction ratio. 

 
flow reversal which manifests itself as 
negative values of the radial velocity u* near 

the porous walls.  

            

 
Fig. 5. Axial or normal velocity component for 
a fixed low Reynolds number R = 1, under 
different values of the expansion or contraction 
ratio. 
 

For the same values of the control 

parameters involving the manifestation of the 
backward flow in the neighborhood of the 
discs, the magnitude of the radial velocity is 
maximal around the middle of the flow domain. 
In fact, the flow reverses in an attempt to 
occupy the empty space created by the increase 

in volume of the flow field as the suction 
Reynolds is relatively small compared to the 
expansion ratio. Another understanding of the 
phenomenon of the backward flow is that, the 
rapid expansion of the flow boundaries slows 
the movement of fluid particles near the porous 
walls, but accelerates the motion of fluid 

particles close to the middle of the flow field. 
The empty space caused by the expansion of 
the flow field is created near the porous walls, 
since the fluid turns back to fill the vacuum 
that only occurs close to the boundaries. 
Indeed, this is understandable, because as it is 
the movement of the walls which causes the 

vacuum, it is geometrically convincing that 
this vacuum is first perceptible in the vicinity 
of the walls, reason why in Fig. 2 the radial 
velocity increases with the parameter  near 

the middle of the flow field while a decrease is 
observed in the neighborhood of the walls. 

 

 
Fig. 6. Axial or normal velocity component for 
a fixed Reynolds number R = 20, under 
different values of the expansion or contraction 
ratio. 
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corresponding to the increase in volume of the 
space containing the moving fluid. 
 

 
Fig. 7. Axial or normal velocity component for 
a fixed Reynolds number R = 50, under 
different values of the expansion or contraction 
ratio. 
 

The comparison of Fig. 2with Fig. 3 
reveals that, although flow reversal occurs in 
the flow field, the expansion process 
dominates the suction phenomenon as 
presented in Fig. 2, the magnitude of the radial 

velocity increases in the central region of the 
space containing the fluid, but this magnitude 
decreases in Fig. 3 due to the growth of the 
Reynolds number involving the disappearance 
of the backward flow as the influence of the 
augmentation in volume of the flow domain on 
the fluid motion is reduced compared to the 

suction phenomenon. For added clarity, the 
results from the numerical integration show 
that, in this work, flow reversal or the 
backward flow seems to occur within the flow 

domain as the relative suction ratio R/  is 

great or equal to 1, such that 1/ R . In light 

of Figs. 24, the increase in the suction 
Reynolds by expanding the space containing 
the fluid tends to create an oscillatory behavior 
of the radial velocity component, on one hand. 

On the other hand, for all the values of the 
Reynolds number, the contraction involves the 
flattening of the radial velocity profiles.   
 
4.2 Normal velocity profile 

Fig. 8. Axial or normal pressure gradient for a 
fixed low Reynolds number R = 1, under 
different values of the expansion or contraction 
ratio.  
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numbers, the contraction in volume of the flow 
field causes a linear profile of the normal 

velocity as shown in Figs. 57. For more 
details, the results from the numerical 

integration enable to observe that, as the 
suction Reynolds number is successively 
increased above 20, the normal velocity 
becomes increasingly more linear by 
approaching its expected behavior for an 
inviscid suction flow *w  [6, 51]. For this 

reason, large suction cases are not always 
shown whenever the corresponding curves are 
found to cluster very near the inviscid solution. 

           

 
Fig. 9. Axial or normal pressure gradient for a 

fixed Reynolds number R = 20, under different 
values of the expansion or contraction ratio. 
 
4.3 Pressure gradients  

 
This stage is devoted to show that the 

behaviors of pressure gradients presented in 

Figs. 810 are related to those of velocity 
components due to the momentum 
conservation giving rise to the Navier-Stokes 
equations. Indeed, the flow reverses for a low 
suction because of a weak pressure gradient 

caused by the expansion in volume of the 
space containing the fluid according to Fig. 8. 
More precisely, it is well known that as the 
distance between the two discs increases due to 
the expansion process, the pressure gradient 
diminishes. Thus, the diminution of the 
pressure gradient slows the movement of the 

fluid by involving the backward flow in some 
regions within the flow domain. The described 

behavior is illustrated in Fig. 8 where the 
pressure gradient plotted for a low fixed 
Reynolds number R = 1 takes small values 
under different values of the expansion ratio . 

These values of the normal pressure gradient 
cease to be small for high contraction due to 
the reduction in volume of the flow field that 
destroys flow reversal. It follows that the 
reduction in volume of the flow domain 

augments the normal pressure gradient. This 
augmentation of the normal pressure gradient 
which manifests itself as great variations tends 
to increase the movement of the fluid being 
limited to a flat profile of the radial velocity. It 

appears from Figs. 810 that the normal 

pressure gradient presents a linear behavior as 
the volume of the space containing the fluid is 
reduced. By increasing the Reynolds number, 
Fig. 10 shows that the normal pressure 
gradient decreases in the flow domain although 
it presents great variations for high contraction, 

while an increase is observed for high 
expansion. 

 

 
Fig. 10. Axial or normal pressure gradient for 
a fixed Reynolds number R = 50, under 
different values of the expansion or contraction 
ratio. 
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axisymmetric and the working fluid is 
incompressible, the stream function is 
prescribed in the governing equations in order 
to transform the problem described by the 
velocity components and pressure into a single 
equation satisfied by this stream function. As 
the vorticity equation satisfied by the stream 

function is a Partial Differential Equation 
(PDE), a method of similarity solution taking 
into account the geometry of the flow domain, 
the boundary conditions and the physical 
properties of the fluid is applied to transform 
the vorticity equation into an Ordinary 
Differential Equation (ODE) describing the 

same problem. Thus, the investigation of the 
dynamics of the fluid is restricted to solving a 
two-point boundary value problem. To achieve 
solutions, a numerical scheme based on the 
rapidly converging shooting method associated 
with a fourth-order Runge-Kutta algorithm is 
applied. These solutions are represented in 

terms of the radial and normal velocity 
components, as well as the normal pressure 
gradient. The results obtained show that a high 
expansion of the flow domain in the case of a 
low fixed Reynolds number causes flow 
reversal characterized by the presence of some 
regions of negatives values of the radial 
velocity. However, the increase in the suction 

Reynolds number prevents the manifestation of 
the backward flow as long as the relative 

suction ratio R/  is less than 1. The 

contraction of the volume of the space 
containing the fluid causes a flattening of the 
curves corresponding to the radial velocity, 
while the normal velocity tends to satisfy a 
linear law.  

Due to a high expansion ratio in the case 

of a low fixed Reynolds number, the variations 
of the normal pressure gradient are reduced. 
On the other hand, these variations of the 
normal pressure gradient become more 
significant by contracting or expanding the 
volume of the space containing the fluid in the 
case of high values of the suction Reynolds 

number, with the difference that the normal 
pressure gradient decreases for a high 
contraction and increases for a high expansion.  
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