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ABSTRACT

In the present study, the commencement of double-diffusive 
convection with an internal heat source is studied using a linear 
instability analysis. The system consists of a fluid layer on top of a 
porous layer saturated with the same fluid. The boundaries are 
insulating to temperature perturbations, and the regular 
perturbation technique is applied to obtain the Rayleigh number. 
The results of detailed stability characteristics are presented for 
crucial physical factors, such as thermal Rayleigh number, the 
inverse Lewis number, depth ratio, the solute Rayleigh number, 
and heat source strength.

© Published at www.ijtf.org

 1. Introduction
Double-diffusive convection, which 

depicts convection driven by two separate 
density gradients, has sparked many research 
activities in recent years because of its broad 
range of applications. Some unique areas of 
application include the growth of metal 
crystals, solar ponds, insulation of buildings 
and equipment, energy storage and recovery, 
geothermal energy extraction and reservoirs, 
dispersion of pollutants in the environment, the 
underground disposal of nuclear wastes and 
material and food processing   (Nield [1], 
Straughan [2]). Among the most recent 
contributions are (Capone et al. [3], Chaya and 
Gangadharaiah [4], Malashetty and Biradar 
[5], Malashetty et al. [6],  Gangadharaiah et al. 

camse [7], Chang [8], Hill and Carr [9], Hill 
and Straughan [10]).

Convective motion in composite layers 
due to volumetric heating has attracted 
immense attention in the current past because 
of its prevalence in energy-related and 
geophysics engineering problems, including 
underground disposal of radioactive waste 
materials, heat removal from nuclear fuel 
debris, storage of food-stuff, exothermic 
chemical reactions in the packed-bed   reactor  
and so  on.      Recent contributions include 
(Carr [11], Suma et al. [12], Khalili et al. [13], 
Gangadharaiah et al. [14], Shivakumara et al. 
[15], Gangadharaiah[16], Gangadharaiah   and  
Ananda [17], Straughan[18], and 
Gangadharaiah and  Suma[19]).
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In this study, we combine a two-layer 
system consisting of a layer of fluid 
superimposing a porous layer saturated with 
the same fluid (e.g., Sheng and Chen et al. 
[20], Saleem et.al. [21], Gangadharaiah [22] 
and  Princewill [23], with double-diffusive 
convection.

A lot of study attention in terms of 
single-layer models, both liquid and porous 
(Hill [24, 25], Malashetty and Biradar [5], 
Gangadharaiah et al. [26]). Chang [27] 
considers this situation in the context of fluid 
floating on top of porous media. This article 
advances the fluid-porous model by allowing 
for double-diffusive convection for the first 
time. Double-diffusive Marangoni convection 
in a two-layer system is studied by 
Gangadharaiah [22]. Double-diffusive 
convection induced by selective absorption of 
radiation in a two-layer system reviewed by 
Princewill [23] and recently double-diffusive 
surface driven convection in a fluid-porous 

system is studied by Gangadharaiah [28]. In 
this work, double-diffusive convection in 
composite layers with an internal heat source is 
checked using a linear instability analysis.  The 
analytical solution that is obtained is analyzed 
by varying the governing parameters.

2. Conceptual Model
We consider the horizontal two-layer 

system of an anisotropic porous bed of width 
underlying a fluid layer of width the 

lower boundary of the porous layer is taken to 
be rigid(see Fig.1).

Fig. 1. Physical configuration
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3. Mathematical Formulation
The mathematical governing relation for 

the above configuration are 

3.1 Fluid zone

                                                       (1)

      (2)

                 (3)

                           (4)

3.2 Porous zone

                            (5)

(6)

           (7)

                  (8)

In order to investigate the stability of the 
fundamental solution, infinitesimal 
disturbances are introduced.

 
                 (9)

   (10)
The dimensional less disturbance 

equations are given by( after linearization)

         (11)

     
               (12)

                                      (13)

         
(14)

                        (15)

                 (16)

Where  is the inverse fluid, Lewis 

number is the  inverse porous Lewis 

number,  is the thermal  

Rayleigh number,  is the 

solutal Rayleigh number and 

, 

3.3  Normal mode analysis

 (17)

(18)
Where and  are horizontal 

plan forms satisfying  and 

. 
Substituting Eqs. (17) - (18) in Eqs. (11) - (16), 
we obtain the following ordinary differential 
equations: 

   
     

(19)
 

     
        

(20)
   (21)

   
              (22)

 
  (23)

 
                          (24)

The boundary conditions are  of  the form
        (25)

                                            (26)
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       (27)
and  are 

    
    (28)

                                              (29)

   (30)

                                           (31)

                                               (32)

  
   (33)

            
(34)

4.   Solution by regular perturbation 
technique 

The dependent variables are now 
expanded in powers of   in the form

   
   (35)

     (36)

Substituting these equations in to obtained  
eigen value problem and collecting  the leading 
order in  become,

                                           (37)
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                            (42)
and the boundary conditions (25)–(34) become
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The solution above equations is given by
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              (67)

                            (68)

Then  solvability condition is given by

  

(69)
The general solution of  Eqs. are 
respectively given by

 

(70)

        (71)

Where 

Substituting for and in Eq.(69), we 
obtain an expression for the solute Rayleigh 
number in the form
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5. Results and Discussion
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Figure 5 depicts a variation of the , 

and with respect to inverse fluid and 
porous Lewis numbers, Positive 

increments appear to generate more 
instability in the system, allowing convection 
to begin. 

Figure 6 shows  a variation of the and 

with respect to   It is discovered that 

 increases with  regardless of the 

variations of  We conclude that   has a 

linear relationship with  
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Double-diffusive convective motion 
in a system composed of a horizontal 
binary fluid with a porous matrix has been 
investigated.  The key outcomes of the 
study of linear stability are defined as 
follows:

 Stabilization of the system is 
achieved by increasing the internal heat 
sources in both fluid and porous layers. 

 Depth ratio  increases, which 
means that when the fluid layer is 
relatively thick, the system’s instability 
develops.

 Stabilization of the system is 
achieved by increasing the inverse fluid 
and porous  Lewis numbers. 

 The Rayleigh number  has a 
linear relationship with 
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