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ABSTRACT

This article investigated nonlinear and non-Fourier heat conduction 
in a porous cylindrical fin since no other study has already done so. 
First, the literature on heat transfer in porous fins was briefly 
reviewed. Then, the heat conduction equation governing the 
problem was derived while considering all three heat conduction 
modes, namely conduction, convection, and radiation. The equation 
was made nonlinear by considering the thermal conductivity and 
heat generation coefficient changes caused by temperature. The 
equation was solved with boundary conditions and Galerkin’s 
weighted residuals method. The comparison of results with a 
reference study showed that this method properly predicts the 
temperature profile. The effect of three parameters, namely the 
Vernotte number, the thermal conductivity coefficient, and the heat 
generation coefficient on temperature profile was investigated, 
which revealed the importance of assuming that the problem is non-
Fourier and nonlinear.

© Published at www.ijtf.org

                                                                                                                      
1. Introduction

Nowadays, competition drives 
manufacturing industries to reduce material 
consumption by as much as possible while 
maintaining product functionality.

In the fin manufacturing industry, the 
reduction in cost and dimensions must coincide 
with improved heat transfer, which is possible 
with the following three methods: 1. Increasing 
the fin's thermal conductivity, 2. Increasing the 
convection heat transfer coefficient, and 3. 
Increasing the heat transfer area in a specific 
volume. 

In recent years, many studies have used the 
first two methods to optimize fin shape and 
improve heat transfer, yet there are problems 

associated with these two methods. First, using 
materials with a high thermal conductivity often 
increases the price. Second, there are limitations 
to increasing convection heat transfer 
coefficient, and using very high speeds is 
infeasible in most applications. Therefore, 
porous materials can be used with the third 
method to improve fin heat transfer [1-6].

Due to empty spaces in their solid 
structure, porous materials transfer heat with 
fluid convection which, in addition to heat 
conduction, shows the importance of heat 
transfer in porous materials.

The literature on the heat transfer of porous 
materials has expanded to explore various 
aspects such as heat  convection,  the  effect  of
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Nomenclature

A Surface area [m2] Greek symbols

Bi Biot number α0 Thermal diffusivity [m2 s-1]

C0
Speed of thermal wave [m s-1] β Coefficient of volumetric thermal 

expansion [K-1]
Cp Specific heat [J kg-1K-1] ε Emissivity of porous fin
CT Dimensionless fluid temperature λ Coefficient of thermal conductivity [K-1]
g Gravity acceleration [m s-2] ν Kinematic viscosity [m2 s-1]
G Dimensionless radiation parameter ρ Density [kg m-3]
h Heat transfer coefficient [W m-2 K-1] σ Stephen–Boltzmann constant [W m-2 K-4]
k Thermal conductivity [W m-1 K-1] τ Thermal relaxation time [s]
K Permeability of porous fin ψ Coefficient of heat generation [K-1]

L Length of the fin [m] Subscripts

ṁ Mass flow rate of the fluid [kg s-1] a Solid properties
P Perimeter of the fin [m] b Base of fin conditions
Q Dimensionless heat generation parameter C Conduction
q Heat flux [W m-2] eff Porous properties
Sh Dimensionless porous parameter f Fluid properties
T Temperature [K] g Heat generation
t Time [s] R Radiation
V Velocity [m s-1] ∞ Fluid medium condition

Ve Vernotte number Superscripts

x Axial coordinate [m] ~ Dimensionless parameter

heat radiation, viscous dissipation, mass 
transfer, the effects of dimensionless numbers, 
the permeability effect, and others [7]. Table 1 

briefly mentions the literature on the heat 
transfer of porous fins.

Table1
The literature on heat transfer in porous fins

Reference, 
year

Geometry of 
fin

Case study Methodology Main finding

[8], 2001 rectangular Introducing a novel 
method to analyze 
porous fins

numerical The performance of porous 
fins is enhanced by increasing 
the Rayleigh number.

[9], 2007 rectangular Analyzing a porous fin in 
a convection 
environment

numerical A new parameter called SH, 
which includes flow and 
geometric parameters, was 
introduced.

[10], 2007 rectangular Investigating the effect 
of radiation heat loss on 
heat transfer of porous 
fins

numerical The effect of radiation is more 
important in cases where 
natural convection is weaker.

[11], 2010 rectangular Studying the effect of 
MHD on the 
performance of porous 
fins.

numerical The MHD has a conflicting 
behavior in porous fins, 
depending on temperature 
difference with fin base.
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[12], 2011 rectangular Considering the effects 
of radiation and 
convection heat transfer

numerical More heat dissipates with 
radiation compared with 
convection only.

[13], 2011 rectangular Using an analytical 
method to study the 
performance and 
optimization of porous 
fins

analytical Different effects of 
parameters on the 
performance of porous fins 
were achieved.

[14], 2012 rectangular, 
convex, 

parabolic, 
exponential

Using an analytical 
method (ADM) to study 
different fin shapes

analytical The fin with exponential 
shape transferred the most 
heat compared to others.

[15], 2013 rectangular Using three analytical 
methods (DTM, CM, 
LSM) and temperature-
dependent internal heat 
generation

analytical The three analytical methods 
were found more effective 
than numerical methods.

[16], 2013 rectangular Studying the effect of 
radiation on heat transfer 
of porous fins with 
different tip boundary 
conditions.

analytical Increasing fin permeability 
enhances heat transfer in fins. 
HAM is an efficient method to 
analyze heat transfer in porous 
fins.

[17], 2013 rectangular Solving an inverse 
problem to predict the 
values of fin 
permeability, thickness 
solid thermal 
conductivity, porosity, 
and length.
.

numerical A suitable combination of the 
five mentioned parameters 
with an error of 11 % was 
achieved to predict the 
temperature profile.

[18], 2014 rectangular, 
convex, 

triangular, 
exponential

Using different ceramic 
materials and different 
fin shapes

analytical, 
numerical

The fin with exponential 
shape and Si3N4 material 
transferred the most heat 
compared to others.

[19], 2014 triangular Investigating the 
convection-radiation 
effects on triangular 
porous fin by DTM 
method

analytical DTM is an excellent method 
to analyze similar problems.

[20], 2014 rectangular Studying heat transfer in 
moving porous fins by 
ADM.

analytical The temperature prediction of 
ADM is excellent compared 
to numerical methods.

[21], 2014 cylindrical Using a hybrid method to 
solve an inverse problem 
to estimate the unknown 
parameters

numerical The hybrid (DE–NLP) 
method is more efficient than 
the individual methods.

[22], 2014 rectangular Investigating the effect 
of transient heat transfer 
on thermal response of 
porous fins.

numerical The effect of different 
parameters on unsteady heat 
transfer was studied.

[23], 2015 rectangular Applying an analytical 
method (HPM) to study 
porous fins

analytical HPM is a powerful tool to 
analyze heat transfer in porous 
fins.

[24], 2016 annular 
stepped fin

Analyzing an annular 
stepped fin with moving 
conditions

analytical A modified Peclet number 
was introduced to express the 
fin efficiency properly. 
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[25], 2016 rectangular 
stepped fin

Using an analytical 
method (ADM) to study 
porous fins with 
temperature-dependent 
parameters

analytical ADM is a useful method to 
study the mentioned problem.

[26], 2016 rectangular Solving a nonlinear 
radiative-conductive 
heat transfer problem in 
porous fins using SCM.

analytical Spectral collocation method 
(SCM) has excellent 
prediction of temperature 
profile compared to numerical 
methods.

[27], 2017 rectangular Investigating the effects 
of non-Fourier heat 
conduction and periodic 
thermal condition

numerical With periodic thermal 
condition, non-Fourier effect 
was found to be important 
only for a short while after the 
initial time.

[28], 2017 trapezoidal, 
convex,
concave

Analyzing the nonlinear 
problem of moving 
porous fins with different 
profiles.

analytical Spectral element method 
(SEM) is a convenient method 
to solve nonlinear moving 
porous fins.

[29], 2018 rectangular, 
trapezoidal, 

concave

Using LSM to solve 
nonlinear heat transfer 
problem in porous fins

analytical LSM is an accurate method to 
solve the nonlinear problem of 
porous fins.

[30], 2019 rectangular Applying three 
analytical methods 
(HAM, HPM, and CM) 
to analyze nonlinear heat 
transfer in porous fins.

analytical The effect of different 
parameters such as the 
Rayleigh number, porosity, 
radiation and convection 
parameters was found to be 
effective in the mentioned 
problem.

Due to a nonhomogeneous structure with a 
high degree of inhomogeneity, Fourier’s law of 
heat conduction does not apply to porous 
materials in most cases, including high thermal 
fluxes [31]. Some references have investigated 
the phenomenon of non-Fourier heat transfer 
[32, 33].

Various experimental studies have 
investigated the heat transfer of porous 
materials in high thermal fluxes, and all have 
stressed the non-Fourier heat conduction 
model's accuracy relative to the Fourier model 
in the stated conditions [34-36].

Table 1 shows that studies have scarcely 
investigated non-Fourier heat conduction in 
porous fins. Only Shah Ahmadi et al. [27] have 
used the numerical method to investigate a 
linear non-Fourier heat conduction problem in a 
porous fin without considering radiation with 
the periodic boundary condition.

This study investigated non-Fourier heat 
conduction in a porous fin and obtained a 
nonlinear equation by accounting for changes in 

thermal conductivity coefficient and heat 
generation coefficient due to temperature.

2. Formulation of the problem 
Fig. 1 shows a schematic of a porous 

cylindrical fin.

Fig. 1. Schematic of a porous cylindrical fin

According to Fig. 1, the following 
assumptions are considered to analyze the 
problem:

1- The fin is exposed to a fluid with 
temperature T∞  and exchanges heat with the 
fluid in the modes of convection and radiation.

2- The end of the fin is insulated and the 
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fluid flows through the fin due to its perforated 
structure.

3. The porous medium is assumed to be 
homogeneous.

4- The fin is considered one-dimensional 
and the heat conduction is transmitted only in 
the direction of its length.

5- Darcy model is used to model the 
interactions of the structure and the fluid, which 
are in thermal equilibrium.

6. Heat generation term and thermal 
conductivity are assumed to be a function of 
temperature.

Considering the above assumptions, the 
energy equation for the fin is written as follows:

(1)

The heat conduction equation is written 
based on the Cattaneo-Vernotte heat wave 
model [29, 30]:

(2)

The boundary and initial conditions for the 
problem are as follows:

(3)

In order to expand the equations and make 
them dimensionless, the following parameters 
are introduced:

    (4a)

  (4b)

Using the parameters in equation (4), and 
differentiating equation (2) with respect to x, 
and differentiating equation (1) with respect to 
t, and performing several mathematical 
operations, the dimensionless equation 
governing heat transfer in the porous fin is as 
follows:

(5)

The dimensionless boundary and the initial 
conditions are as follows:

(6)

3. Solution procedure 
Equation (5) is nonlinear due to assuming 

temperature-dependent thermophysical 
properties. It is difficult to drive the exact 
solution and the approximate techniques can 
simplify the solution procedures. In this paper, 
the Galerkin weighted residuals method, which 
is a powerful and simple method to solve 
nonlinear differential equations compared to 
other semi-analytical methods, was employed. 
This method solves the equations directly and 
does not need any small parameter or 
perturbation. In the current study, the Galerkin 
weighted residuals method was used to obtain 
semi-analytical solutions for the non-Fourier 
heat equation through the porous fins.

The Galerkin weighted residuals method is 
a meshless and straightforward method, which 
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can reduce the partial differential equations to 
ordinary differential equations. The 
approximate temperature profiles (7) satisfies 
the essential boundary conditions (6) 
irrespective of the values of the unknown 
coefficients. As semi-analytic approximate 
temperature profile is employed for fin 
temperature, there is not any need to perform 
discretization in space, which simplifies the 
solving procedure.

To solve equation (5) by the Galerkin 
weighted residuals method, the following 
approximate profiles for the temperature are 
assumed:

(7)

Which satisfies the boundary conditions in 
(6), and Ci(t̃) are the unknown coefficients. 
Substituting the temperature profile (7) into 
equation (5) yields an error function R, which 
includes the unknown parameters Ci(t̃). 

(8)

To obtain the values of the coefficients 
Ci(t̃), the weighted integral of the error function 
is equated to zero.

(9)

The weighting functions used in equation 
(9) are:

(10)

Solving equation (9) by introducing the 
weighting functions in (10) yields n system of 
second-order ordinary differential equations for 
the unknown coefficients Ci(t̃), (i=1..n). To 
solve this system of n second-order ODE’s for 
the unknown coefficients, 2n initial conditions, 
namely Ci(0)=0, 𝑑

𝑑𝑡 Ci(0)=0, (i=1..n), are 

required. The Galerkin weighted residuals 
technique is applied to the following error 
function of the initial condition (7):

(11)

(12)

Which yields:

(13)

(14)

The results obtained from equations (13) 
and (14) for n=3 are:

(15)

(16)

In order to solve the set of ordinary 
differential equations in (9) with the initial 
conditions (15, 16) for n=3, the fourth-order 
Runge-Kutta method is employed. The Maple 
software is used for all computations.

4. Results and discussion
To verify the solution method, Fig. 2 

compares the present study's results with the 
reference in [27]. Fig. 2 shows an excellent 
consistency between both results and, 
quantitatively, there is an average of 0.8% 
relative error compared to reference [27].
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Fig. 2. Validation of solution (Ve=0, Bi=0.49, 
Qa=10, G=1, CT=1, Sh=1, λ̃=0, ψ̃=0)

As pointed out in the Introduction section, 
many studies have investigated heat transfer in 
porous fins and the effect of certain parameters 
on temperature profiles has been investigated in 
these studies. The effect of the Biot number in 
references [12, 14, 16, 20, 22, 37], the effect of 
changes in the CT parameter in references [12, 
16, 22, 26, 28, 38], the effect of changes in the 
G parameter in references [10, 12, 16, 19, 20, 
22, 26, 28-30], the effect of changes in the Q 
parameter in references [24, 26, 28] have been 
studied. Moreover, the effect of changes in the 
Sh parameter (non-dimensional porosity) has 
been studied in most references given in Table1. 
This paper did not evaluate the effects of the 
mentioned parameters on temperature profiles 
since they were the same in Fourier and non-
Fourier conditions. However, according to 
equation 5, the effects of these parameters on 
the temperature distribution inside the fin can be 
interpreted. Table 2 shows the effect of 
mentioned parameters on temperature profile.

Table 2
The effect of increasing of different parameters on 
temperature profile

Parameter Effect
Bi Decrease of temperature
CT Decrease of temperature
G Decrease of temperature
Qa Increase of temperature
Sh Decrease of temperature

4.1 Analyzing changes of the Vernotte number

The Vernotte number represents non-
Fourier heat conduction by definition, and a 
higher Vernotte number represents a higher 
distance to Fourier heat conduction model. Fig. 
3 shows changes in dimensionless temperature 
with four different Vernotte numbers. Fig. (3-a) 
shows that the temperature profile throughout 
the fin does not exceed zero for the Vernotte 
numbers greater than the Fourier number, which 
is the main difference between Fourier and non-
Fourier heat conduction models, which proves 
limited thermal wave velocity in non-Fourier 
heat conduction model.

(a)

(b)
Fig. 3. The effect of the Vernotte number on 
dimensionless temperature profiles (Bi=0.49, 
Qa=0.20, G=0.4, CT=1, Sh=1, λ̃=0.1, ψ̃=0.1)

a. Over dimensionless length (t̃=Fo=0.1)
b. Over dimensionless time (x̃=0.5)
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Furthermore, for x̃ >0.2, the temperature 
differences for the different Vernotte numbers 
are more considerable. Moreover, in higher 
Vernotte numbers, the temperature changes 
slowly for the regions with x̃ >0.2. The reason 
is that by increasing the Vernotte number and 
consequently, increasing the non-Fourier nature 
of the heat transfer, the heat wave needs more 
time to reach the regions that are farther from 
the base of the fin.

Fig. (3-b) shows the temperature profiles at 
x̃=0.5 for different values of the Vernotte 
numbers. It can be seen that in higher Vernotte 
numbers, the thermal signal reaches x̃=0.5, 
needs more time period. Although increasing 
the Vernotte number delays the formation of the 
thermal wave, but the non-Fourier nature of the 
heat propagation diminishes gradually after a 
specific period of time, the graphs become flat 
and the temperature is stabilized.

4.2 Analyzing changes in the dimensionless 
thermal conductivity coefficient

Fig. 4 shows the effect of changes in the 
dimensionless thermal conductivity coefficient 
on temperature profiles. Fig. (4-a) shows that 
changes in the dimensionless thermal 
conductivity coefficient are more pronounced 
in the middle of the fin. Increasing the 
dimensionless thermal conductivity, the 
velocity of the heat signal increases and the heat 
propagates faster through the fin. Since the 
temperature at the base of the fin is constant and 
the heat has not yet reached the ends in initial 
times (t̃=Fo=0.1), the temperature profiles of 
these two regions are convergent.

(a)

(b)
Fig. 4. The effect of dimensionless thermal 
conductivity coefficient on dimensionless 
temperature profiles (Bi=0.49, Qa=0.20, G=0.4, 
CT=1, Sh=1, Ve=0.1, ψ̃=0.1)

a. Over dimensionless length (t̃=Fo=0.1)
b. Over dimensionless time (x̃=0.5)

Fig. (4-b) shows that variations in the 
dimensionless thermal conductivity coefficient 
greatly change the temperature profile over time. 
However, after a certain time and the flattening 
of the temperature curve, their difference 
remains constant. Also, a higher dimensionless 
thermal conductivity coefficient increases the 
temperature range. Both figures show that 
increasing the dimensionless thermal 
conductivity coefficient increases the 
temperature, a behavior also observed in 
reference [39]. In fact, increasing the thermal 
conductivity coefficient increases the 
temperature, which in turn increases the thermal 
conductivity coefficient, and this resonance is 
continued.

4.3 Analyzing changes in the dimensionless 
heat generation coefficient

Fig. 5 shows the effect of changes in the 
dimensionless heat generation coefficient on 
temperature profiles. The graph displays the 
same behavior as observed in Fig. 4, with the 
only difference that the values of the 
dimensionless heat generation coefficient are 
greater than those of the dimensionless thermal 
conductivity coefficient. In fact, the higher 
dimensionless heat generation coefficient 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T̃

x̃

λ̃=0.1

λ̃=0.5

λ̃=0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

T̃

t ̃

λ̃=0.1

λ̃=0.5

λ̃=0.9



M. J. Noroozi  et al.
International Journal of Thermofluid Science and Technology (2021), Volume 8, Issue 4, Paper No. 080405

9

increases the heat generation term value and 
consequently more heat is generated in the fin, 
which increases fin temperature.

(a)

(b)
Fig. 5. The effect of dimensionless heat generation 
coefficient on dimensionless temperature profiles 
(Bi=0.49, Qa=0.20, G=0.4, CT=1, Sh=1, Ve=0.1, λ̃ 
=0.1)

a. Over dimensionless length (t̃=Fo=0.1)
b. Over dimensionless time (x̃=0.5)

5. Conclusion
This study investigated non-Fourier heat 

transfer in a porous fin. Since the thermal 
conductivity and heat generation coefficients 
are functions of temperature, the heat transfer 
equation was nonlinear, which was solved using 
the Galerkin’s weighted residuals method. The 
results indicate that this method can address the 
problem with excellent approximation. The fin's 

non-Fourier heat transfer was evaluated with 
changes to the Vernotte number, proving that 
the non-Fourier assumption is important. In 
higher Vernotte numbers, the non-Fourier 
nature of the heat transfer through the fin is 
more noticeable. Considering non-fourier effect, 
a time delay occurs in the thermal signal to 
propagate entire the fin. Furthermore, the effect 
of changes in the thermal conductivity and heat 
generation coefficients on temperature was also 
investigated. Increasing the temperature-
dependence of the fin thermal conductivity 
results in higher temperatures, especially in the 
middle of the fin. Moreover, in higher heat 
generation coefficients, more heat is generated 
through the fin which results in higher fin 
temperatures. The results showed that using 
materials in which these parameters change by 
temperature, assuming constant parameters will 
lead to significant errors.
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