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ABSTRACT 

 

In the present study, double-diffusive surface-driven 
convective flow in a system composed of a horizontal binary 

fluid layer overlying an anisotropic porous matrix has been 
investigated. The boundaries are insulating to temperature 

perturbations, and the regular perturbation technique is 
applied to obtain thermal Marangoni number. It is discovered 
that the solute Marangoni number, the depth of the relative 

layers, the Darcy number, the diffusivity ratios, thermal and 
mechanical anisotropy parameters have a significant impact 

on the system's stability. Increasing the diffusivity ratios, the 
thermal anisotropy parameter, and decreasing the solute 
Marangoni number, the mechanical anisotropy parameter 

leads to stabilization of the system. Besides, the possibility 
of control of surface-driven convective motion by suitable 

choice of physical parameters is discussed in detail.  
 

© Published at www.ijtf.org 

 1. Introduction 
When the top surface of a liquid-

filled enclosure is exposed to a liquid with low 

viscosity, such as air, the surface tension 

gradient may cause fluid to flow within the 

enclosure. Such a flow is called the surface-

driven convection or thermocapillary flow.  

The surface tension effect can be seen in low 

gravity systems, and it has applications in 

liquid melting, defect-free crystal formation, 

glass manufacturing, resolidifying, and 

welding. Incompressible fluids are suitable for 

the analysis of Marangoni convection since the 

flow velocity of such systems is usually in the 

subsonic range.  Other physical phenomena 

occur as buoyancy develops as a result of both 

concentration  and thermal  diffusion of 

species present in the fluid. Some of the uses 

of such phenomena include atmospheric 

convection, earth warming, and the elimination 

of contaminants from a solution. If the density 

and surface tension also differ with solute 

concentration,   the    phenomenon    is    called  
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Nomenclature 
 

a  horizontal wave number d  thickness of the porous layer  

D  differential operator d dz  
md  thickness of the porous layer 

Da     Darcy number 2

v mK d  p  pressure 

TM  Thermal Marangoni number  

 
0T    temperature at the interface 

 

W     perturbed vertical velocity 
 

T    temperature 
 

Pr  Prandtl number for fluid layer 
 

Prm       
 Prandtl number 

 

    slip parameter 

 
V    velocity  vector  (u, v, w) 
 

2

h     horizontal Laplacian operator  Ms  Solute Marangoni number 
 

2      Laplacian operator    V


   velocity vector 
 

T    ratio of thermal diffusivities       porosity of the porous medium
 

    thermal diffusivity     amplitude of perturbed temperature 
 

    fluid viscosity 

 
0    fluid density 

 
    temperature dependent surface tension 
 

v     kinematic viscosity 
 

                                                                                                          
thermocapillary convection. Double-diffusive 
surface-driven convection is the study of the 
relationship between these two types of flows.  

There are a variety of circumstances in 
which a contaminant is removed by a chemical 
reaction between the contaminant and another 
chemical agent, according to chemical 
engineering. Such phenomena are used in a 
variety of physical applications, including 
geothermal engineering, nuclear waste disposal, 
and electrochemical processes. 

Surface-induced convective motion in a 
composite layer system with a fluid layer 
overlying a porous matrix has gotten a lot of 
attention recently because of its important  
geophysical  and industrial  applications (Nield 
[1,2], Chen[3]  Straughan [4] and Carr [5]), 
such as oil flow in underground reservoirs,  

alloy solidification, hydrothermal synthesis in 
crystalline material growth, mixing, and in ice-
covered lakes. A large number of studies on 
the thermocapillary instability in a two layer 
system have been published in recent 
decades(Suma et al.[6], Khalili et al.[ [7], 
Gangadharaiah et al.[8], Shivakumara et al.[9], 
Gangadharaiah [10], Gangadharaiah   and  
Ananda [11] and Gangadharaiah and  Suma 
[12]). 

Sheng Chen et al. [13] used the lattice 
Boltzmann model to investigate double-
diffusive thermocapillary instability in vertical 
annuluses with contradicting concentration and  
temperature gradients, which is of vital interest 
and viable significance. The successive over-
relaxation technique was used by Saleem et al. 
[14] to study the thermocapillary  convective 
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motion in a square cavity. Using the 
perturbation method, Gangadharaiah [15]  has 
examined double-diffusive thermocapillary 
convection in a composite layer. Sumithra [16] 
used the perturbation technique to expand the 
magneto-double-diffusive convection in a 
composite layer. Massimo Corcione et al.[17] 
have investigated  numerically double-
diffusive convective motion in vertical square 
enclosures caused by horizontal concentration  
and temperature gradients. Tatyana and 
Ekaterina[18] examined the onset of double-
diffusive instability in a two layers under 
small-amplitude vibrations and high-frequency. 
The Kuppers-Lortz convective flow in rotating 
fluid bounded by rigid/free isothermal 
boundaries was investigated by Kanchana et al. 
[19]. They demonstrate that alumina 
nanoparticles in water have the same effect as 
alumina and copper in water. 

In this paper, the thermocapillary 
instability in a fluid-porous system is 
examined. The resulting eigenvalue problem is 
solved using a regular perturbation, and an 
expression for the thermal Marangoni number 
is obtained, and the results are diss ipated  
graphically to determine the impact of solute 

Marangoni number Ms , the mechanical 

anisotropy parameter  , the depth ratio  , the 

Darcy number Da  , thermal anisotropy 

parameter  , and the diffusivity ratios & m    

along with other physical parameters.  
 

2. Conceptual Model 
We consider the horizontal two-layer 

system of an anisotropic porous bed of  width 

md underlying a fluid layer of width ,d the 

lower boundary of the porous layer is taken to 
be rigid(see Fig.1).  

 
Fig. 1 Physical configuration 

 

3. Mathematical Formulation 
The mathematical governing relation for 

the above configuration are  

Fluid zone: 

0V                
                    (1)

   

  2

0

V
V V V p

t
 
 

     
 

           (2) 

  2T
V T T

t



   


                   (3)

  2C
V C D C

t


   


                             (4) 

Porous zone: 

0m mV                                (5)
 

0 m
m m m

V
p V

t K

 




   


                   (6)

   m
m m m m m m

T
A V T T

t



     


   (7)              

  2m
m m m m

C
V C D C

t


   


       (8) 

   
Infinitesimal disturbances are 

implemented to measure the convective motion 
of the basic solution. 

 , &bV V T T z T   
                

 

           

  ' , ( )b bC C z C p p z p          (9)

                               
 

 , ,m m m mb mV V T T z T                            

  ' , ( ) ,m mb m m mb mC C z C p p z p     (10)

  
The dimensional less disturbance 

equations are given by ( after linearization) 

2 21
0w

Pr t

 
    

        

   (11)

 

2 T w
t

 
   

       

                  (12)

 

 
2 C w

t


 
   

 
                                   (13)

                                                       

  

2
2

2
0mh m

m m

Da
w

Pr t z


  
    

  
           (14)
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2
2

2mh m m

m

A T w
t z


  

    
     

              (15) 

2

m mC w
t


 
   

 
                  (16) 

Normal mode analysis 
 

       , , , , ( , )w T C W z z S z f x y      

                                                                            (17)
           

       

 

, , , ,

,

m m m m m m m m

m m m

W T C W z z S z

f x y

    

  

 
                   (18)

  
where ( , )f x y and  ,m m mf x y  are horizontal 

plan forms satisfying       
2 2 2 2

h mh m m mf a f and f a f      .  

Substituting Eqs.    17 18   in Eqs. 

   11 16  , we obtain the following ordinary  

differential equations:  

 
2

2 2 0D a W 
   

      (19) 

 2 2D a W   
     

         (20) 

 2 2D a S W   
  

    (21) 

 2 2 0m m mD a W 
     

    (22) 

 2 2

m m m mD a W   
 
     (23) 

 2 2

m m m m mD a S W   
 
     (24) 

The boundary conditions are  of  the form 

 0 at 1W D DS z        
    (25)

                                                                          
2 2 2 0 1SD W M a M a S at z   

   
 (26)

                                                                                 
0 1m m m m m mD D S W at z     

      
(27) 

and 0,at z   are     

m

T

W W





    

        (28) 

m mD D 
   

                                           (29) 

m mDS D S
       (30)

  

T
m




                                               (31) 

s
mS S




                                                 (32) 

4
2 23 m m

T

D a DW D W
Da



 


   

   

   (33)

 

 

3
2

m m

T

D D W D W
Da Da

 

  

  
  

      

(34)

     

  

  

4.   Solution by regular perturbation technique  
The dependent variables are now 

expanded in powers of  
2a  in the form 

     2

0

, , , ,
N

i

i i i

i

W S a W S


  
   

    (35) 

   
2

2
0

, , , , (36)

i
N

m m m mi mi mi

i

a
W S W S



 
   

 


      Substituting these equations in to obtained  
eigen value problem and collecting  the leading 

order in 
2a  become, 

4

0 0D W 
  

                                           (37)  

2

0 0D W  
    

                                          (38) 

2

0 0D S W  
 

                              (39) 

 
2

0 0m mD W 
     

    (40) 

2

0 0m m mD W                                             (41) 

2

0 0m m m mD S W                                 (42)  

and the boundary conditions    25 34

become 
2

0 0 00, 0, 0 1W D D W at z    

                                   (43)                                                                       
   

0 00, 0, 1m m m mW D at z    
 
    (44)

  
                                                       

  
 

and 0,at z   are     

0 0m

T

W W





      

                             (45) 

0 0
T

m




                                  (46) 

0 0
s

mS S



                   (47) 

0 0m mD D         (48) 

0 0m mDS D S                   (49) 
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3
2

0 0 0 (50) m m

T

D W DW D W
Da Da

 

  


 

   
4

3

0 0m m

T

D W D W
Da






                               (51)

 

 

The solution above equations is given by 

0 0 00, , STW S


 
   

   

                (52) 

0 0 00, 1, 1m m mW S                     (53) 

the first order in   , Eqs    37 42 then 

reduce to 
4

1 0D W 
        

                                          (54)  

2

1 1
TD W



                                  (55) 

2

1 11D S W   

 

                             (56)  

2

1 0m mD W 
  

                                           (57) 

 
2

1 11m m mD W   
  

                    (58) 

2

1 11m m mD S W                                        (59) 

and the boundary conditions    25 34

become 

1 10, 0,at 1m m m mW D z         (60)
     

      

1 10, 0, at 1W D z         (61)

 
2

1 0 at 1sT
SD W M M z


 
   

      

   (62)

             

     

                            

 

and 0,at z   are     

1 1

1
m

T

W W


                                      (63)

 

 

1 13

T
m




  

      

                                          (64) 

1 13

s
mS S






 

                              (65) 

1 12

1
m mD D


  

   

                   (66) 

1 12

1
m mDS D S


       (67)

 
 

2

1 1 1m m

T

D W DW D W
Da Da

 

  


 

 

(68) 

2
3

1 1.m m

T

D W D W
Da



 




 

                           (69) 

Then  solvability condition is given by 

 

 

1 0

1 12

0 1

1 0

1 1 22

0 1

1
( )

11 1

T s
m

m

m

f z W dz W dz

W dz W dz

 

 



  





   
   

   
   

     
   


   
     

 

 

                                                                     (70)                            

where S CM C d D     is the solute   

Marangoni number,  TM T d     is 

the thermal  Marangoni number.
 

The general solution of  Eqs.    54 & 57 are 

respectively given by 
2 3

1 1 2 3 4W c c z c z c z   
      

                (71) 

1 5 6m mW c c z 
  

          (72)                            
  
 

Where  

1 T4Da  (2 Da  +  ),c  

 

 2 2

2 s- 6 Da 3 Da ,c       

 3

T
3

 7 Da( - 1 )
,

2
c

   

 






T s T
4

 ( 2 Da )
,

2
c

    








 2

S
5 6

 6 ( 2 Da )Tc c
  



 
 


 

 2 34 Da  + 2 - 3  T TM Ms       

Substituting for 1W  and 1mW  in Eq.(70), 

we obtain an expression for the thermal  

Marangoni number TM  in the form 

 2

2 3

1 2

3 Da
120

3 ( ) (1

S

T T

T

Ms

Da
M

  


    

   
 
    

  

                                                        (73)  
Where  
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 2 3

1 7  Da + 2  - 3 ,T S TMs Ms      

 2 3 3 4

2  2 - 3 Da  +6T Ms Ms       

From  73 , we note that in the absence of 

Ms  , and as ,   48.cM 
 
This is the 

exact value for a signal fluid layer that is 
defined (Pearson1958).

  
 

5.Results and Discussion 
The onset of thermocapillary convective 

motion in a  two layer system composed of a 
horizontal binary fluid with an anisotropic 
porous layer has been examined. The 
perturbation technique is used to solve the 
resulting eigenvalue problem.For the sake of 
comparison, the findings of  Shivakumara et al. 
[20] are shown in Table 1 for various values 

and Da  with 0SM  . Our findings are 

found to be in strong agreement. 
The influence of the anisotropy effect on 

the convective motion of the composite system 
is presented in Fig.2.  The graph depicts the 

impact of thermal Marangoni number TM  

verses   for various values of solute 

Marangoni number SM  
 

with 

0.725, 1s     , 0.003Da   &

0.725T  . It should be observed  that for 

the above-mentioned values of SM  , the 

thermal Marangoni number reaches higher 

values at lower values of  . Decreases in   

prolong the onset of surface-driven  convection, 
in other words. On the contrary, decreasing the 

thermal anisotropy parameter   hastens the 

onset of thermocapillary convection, as shown 
in Fig.3.  

In Figure4, we plot TM   versus  ζ for 

various values of Da and SM  when  1 

, 0.725T s    are showed  in a Fig 4. As 

expected, the impact of the decrease Da   is to 

raise the value of  TM . And also noted that,  

the effect of  Darcy number  has a significant 

role on the system stability for 0.5,  while 

the curves of various  Darcy number  merge 

into one when 0.5   for both 0SM   and 

10 .SM   Increasing 
SM is

 
delay the onset 

of thermocapillary convection.  
The impact of the solute Marangoni 

number  
SM  on 

TM   is shown in Fig.5, for 

different values of & m  when 0.003,Da 

0.725 ,T S   0.5& 1.      It is 

clear from the figures that the thermal 
Marangoni number is reduced by increasing 

the value of   
SM  and thus has a non-

stabilizing effect on the system. However, an 
raise in the values of the thermal diffusivity 

ratios & m   is to increase the thermal 

Marangoni number is
 

delay the onset of 
thermocapillary convection.  

The effect of the thermal diffusivity ratios 

mand   on TM   is shown in Figs6 and 7, 

respectively, for different values of

0,10,20SM  when 0.003,Da   

0.725T s   0.5& 1.      It is 

clear from the figures that raising the value of 

SM  lowers the thermal Marangoni number, 

which has a non-stabilizing effect on the 
system. However, raise in the values of 

thermal diffusivity ratios mand   is to raise 

TM , as a result, the start of convection is 

postponed. 
Figure.8 shows the perturbed vertical 

velocity eigenfunctions W   &  mW  for various 

values of the thermal anisotropy parameter   

for 0.5  1  , 0.725T s    and 

0.003Da  . The effect of the thermal 
anisotropy parameter    has no noticeable 

influence on mW
 
but is to accelerate W  for 

the higher values of the thermal anisotropy 

parameter  . 
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Table1 Comparison of  
TM and    with Da  when    = 0.5= , 

T = 0.725,   = 1 and 0SM   

  0.001Da   0.003Da   0.005Da   

Present 
study  

Shivakumara 
et al.[20] 

Present study  Shivakumara 
et al.[20] 

Present 
study  

Shivakumara 
et al.[20] 

0.1 5.178 5.178 3.198 3.198 2.631 2.631 

0.5 68.934 68.934 42.717 42.717 31.999 31.999 

1.0 72.414 72.414 64.118 64.118 58.314 58.314 

1.5 66.136 66.136 62.651 62.651 60.069 60.069 

2.0 62.091 62.091 60.058 60.058 58.567 58.567 

2.5 59.465 59.465 58.055 58.055 57.038 57.038 
  

 

Fig. 2  
TM versus   for different values of   

Ms  with 0.5& 1.m        

 

 
Fig. 3  TM versus   for various  values of   

Ms  with 0.5& 1.m        

 
 
 

 
Fig. 4  

TM versus   for various values of  Da   

for  a dashed line  0,SM   1& 

0.5    

 b thick line  10, 0.5& 1.SM        
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Fig. 5  TM versus SM  for different values of   

& m   with 0.5& 1.      



Y. H. Gangadharaiah  

International Journal of Thermofluid Science and Technology (2021), Volume 8, Issue 3, Paper No. 080301 

8 
 

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

20

10

0SM 

TM

m

 

 

Fig. 6  
TM versus 

m  for different values of   

Ms  with 0.5& 1.        
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Fig. 7  
TM versus   for different values of   

Ms  with 0.5m      & 1.   

6. Conclusions 

Double-diffusive surface-driven convective 
motin in a system composed of a horizontal 
binary fluid with  an anisotropic porous matrix 
has been investigated.  The key outcomes of 
the study of linear stability are defined as 
follows: 

 The vertical velocity flow has 
maximum as the effect of the thermal 

anisotropy parameter   increases. 

 Stabilization of the system is achieved 
by decreasing   the solute Marangoni 

number and the mechanical anisotropy 
parameter. 

 The system stabilizes as the thermal 
anisotropy and diffusivity ratios 
parameters are increased. 
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Fig. 8. Vertical velocity profile   for different 

values of    with 0.5,  1.   
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