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Abstract 

Stability on dual solutions of second-grade fluid flow over a stretching surface with simultaneous 

thermal and mass diffusions has been studied. The fluid flow is governed by Lorentz force and energy 

dissipation due to viscosity. Lorentz force is generated due to the application of magnetic field along 

the transverse direction. In methodology, suitable similarity transformation and MATLAB built-in 

bvp4c solver technique have been adopted. Effects of some flow parameters are exhibited through 

figures and tables and a special emphasis is given on the existence of dual solutions. A stability 

analysis is executed to determine the stable and physically achievable solutions. For the laminar flow, 

the drag force on the surface for the time-independent case is reduced due to amplifying values of 

Re.  But, it enhances the drag force for the time-dependent case. This shows the effectiveness of the 

first solution (during steady case) over the unsteady case.   

Keywords: Dual solutions, heat transfer, mass transfer, stability analysis, stretching sheet, visco-

elastic fluid. 

1. Introduction 

Fluid flow over the extending/shrinking surface has attracted many researcher attentions due to 

its wide range of applications in industrial purpose. The study of fluid flow due to extending 

geometries can be related to polymer extrusion, drawing or plastic films, hot rolling, casting etc. 

Crane [1] was the first author who introduced the flow problem over a linearly stretching sheet. Again, 

the fluid flow in presence of a magnetic field is very important in applied sciences, engineering and 

industrial processes such as MHD pumps and MHD power generator etc. Many researchers have 

taken the magnetic field for controlling fluid and enhancing temperature of the system. Makinde et 

al.[2], Farooq et al. [3] and Krishna et al.[4] have investigated the effects of magnetic field on fluid 

flows over various stretching surfaces.   

The viscoelastic fluid is a special kind of non-Newtonian fluid having both viscous and elastic 

properties. The momentum, thermal and mass transfer phenomena in a viscoelastic boundary layer 

have been investigated widely in the modern time because of their applications in the polymer 

processing industries and other physical fields. The recent advancement of modern technologies has 

triggered many researchers to study the fluid flows with simultaneous effects of both thermal and 

mass transfer and other interactive physical phenomena. 
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Nomenclature 

 

A         
constant                                                      u         velocity along x  direction, m/s                               

B         constant                                                      v          velocity along y   direction, m/s                               

0B        strength of magnetic field, A/m                Greek Symbols 

C         concentration of the fluid, mol/m
3
                     dynamic viscosity, kg/m s 

fC       skin friction coefficient                                        kinematic viscosity, m
2
/s                                        

PC       specific heat at constant pressure, J/kg K           eigen-value parameter                                    

c          shrinking/stretching constant    
                

( )     dimensionless fluid concentration                          

mD       mass diffusivity, m
2
/s                                        density of the fluid, kg/m

3
   

Ec       Eckert number                                                    electric conductivity                                       

'( )f   
dimensionless fluid velocity                               stream function 

K        fluid thermal conductivity, W/m K                      dimensionless time variable 

k         visco-elastic parameter                               w        shear stress                                                                                                                                                                           

M        magnetic parameter                                  ( )      
dimensionless fluid temperature                                                                                                  

xNu      local Nusselt number                                Subscripts   

Pr        Prandtl number                                          w         at wall                                   

wq        heat flux                                                             at ambient situation 

Rex      local Reynold number                                Superscript 

Sc        Schmidt number                                         '         prime (differentiation with respect to   

T          temperature of the fluid, K                                   the dimensionless variable  )             

t           time, s                                                                                        

                                                                                                                                                                                                                                                                                                                                                                                                                                                                           

 
Again, there are multifarious applications of both thermal and mass transfers in stretching/shrinking 

surfaces such as annealing and thickening of copper wire etc. Turkyilmazoglu [5] has studied the 

simultaneous effects of thermal and concentration on the boundary layer flow using analytical 

technique. Othman et al.[6] have investigated the boundary layer flow of nanofluid due to 

stretching/shrinking surface and interpreted the importance appliance of thermal and mass transfer 

effects on different physical fields. Anwar et al.[7] have examined the flow behaviour of non-

Newtonian fluid due to stretching type surface by adopting numerical scheme. Asghar et al.[8] have 

investigated the steady three dimensional flow of viscous fluid with thermal effect due to rotating disk 

which is stretched in radial direction. Many authors, (Alharbi et al. [9], Ghadikolaie et al. [10], Salah 

and Elhafian [11], Dey [12, 13]) have investigated the boundary layer flow with heat and mass 

transfers of visco-elastic fluid over different geometries. Very recently, Shankar Goud [14] has 

studied the influence of thermal radiation and magnetic field on the boundary layer flow caused by 

stretching surface. Hayat et al.[15] have studied the simultaneous effects of thermal and mass transfer 

phenomena on the boundary layer flow  between two parallel disks using visco-elastic fluid model. 

Sailaja et al.[16] have developed the importance of natural and forced convection heat transfer of the 

nanofluid which is caused by vertical stretching surface and put their importance on the different 

physical fields such as engineering sciences, medical sciences and other industrial processes etc.          

Due to stretching/shrinking type surfaces, a sudden change (disturbances) of the flow nature is 

noticed during the fluid flow. Initially, there may not be any disturbances on the flow when the 

surface is at rest. For that situation, the boundary layer flow provides steady type solution which is 

tractable in practice. But, when the surface is going to stretch or shrink, an initial growth of 
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disturbances is observed on the flow which affects the flow behaviour and both thermal and mass 
transfer phenomena are dependent on time. In this situation, a new branch of solution which is 

dependent on time is developed. Markin [17] was the first author who developed the dual type (lower 

branch and upper branch) solutions for the boundary layer flow and given their important physical 

significance. Othman et al.[6]  have investigated the dual solutions of nanofluid flow due to shrinking 

surface and established that the time-independent solutions is physically tractable. Turkyilmazoglu 

[18] has studied multiple solutions of boundary layer flow of present fluid model by analytical 

technique. Recently, many researchers (Zaimi et al. [19], Naramgari et al. [20], Anuar et al. [21] and 

Dey and Borah [22] etc) have investigated the dual solutions of different fluid models and their 

stability of the boundary layer flow over different expanding/contracting surfaces. They have 

established that first solution is stable and physically achievable.  
The main intention of this study is to investigate the behaviour of dual solutions due to boundary 

layer flow of second-grade fluid with thermal and mass transmissions over an expanding sheet in 

presence of uniform magnetic field. The governing partial differential equations are transformed into 

a set of ordinary differential equations using appropriate similarity transformations and have been 

solved numerically by MATLAB built-in bvp4c solver technique. A comparison of our work has been 

made with the results of Ghadikolaie et al. [10]. We have extended the work of [10] by considering 

the effects of magnetic field and the mass diffusion on the visco-elastic fluid flow and their multiple 

solutions that occurred due to stretching type surface Different novel flow parameters involved in this 

problem are interpreted in the physical sense.    

2. Formulation of the problem 

The two-dimensional, steady, laminar and incompressible boundary layer flow past a stretching 

surface with heat and mass transfers of non-Newtonian second-grade fluid has been considered. The 

flow model and coordinate system is shown by figure (1). The sheet behaves like an elastic surface 

i.e., two equal and opposite forces are applied along x-direction of the sheet for which sheet is 

stretched and reserved and the origin fixed. A uniform magnetic field 0B  is applied along the normal 

direction of the flow. Using boundary layer approximations, the governing equations of fluid motion 

are (following Ghadikolaie et. al. [10]): 

 

0,
u v

x y

 
 

 
                                                                                                                     (1) 

22 2 2 3
01

2 2 2 3
,

Bu u u u u v u
u v u v u

x y x yy y y y




 

         
       

                                          

(2) 

22

2
,

p

T T T K u
u v

x y C yy




    
    

    
                                                                                (3) 

2

2
.m

C C C
u v D

x y y

  
 

  
                                                                                                   (4) 

The associated boundary conditions are (following Ghadikolaie et. al. [10]): 

           
, 0, ( ), ( )s

w w wu u cx v T T T Ax C C C Bx          : 0,y   

 

0, 0, ,
u

u T T C C
y

 


   


: ,y                                                                        (5) 

where, , , , , ,w w wu T T C C s  & ( , )A B are wall velocity, wall temperature, free stream temperature, wall 

concentration, ambient concentration, wall temperature parameter and constants respectively. The 

constant 0c  signifies stretch at the surface. 
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Fig. 1 Flow model and coordinate system 

 
The following similarity transformations are introduced to renovate the above governing 

equations into a set of ordinary differential equations. 

( ), , ( ) , ( ) ,
w w

T T C Cc
c xf y

T T C C
       


  

   
   

                                        

(6) 

where,   is the stream function such that the velocity components can be derived as u
y





&

v
x


 


. Therefore, we have obtained the following set of ordinary differential equations: 

2 2' '' ''' 2 ' ''' '' ',ivf ff f k f f f ff Mf       
                                                             (7) 

2'' Pr ' Pr ' Pr '' ,f s f Ecf     
                                                                               

(8) 

'' ' ' 0,Scf Scf                                                                                                        (9) 

where, prime represents differentiation with respect to dimensionless variable .

2
0 1, ,Pr ,

m

B c
M k Sc

c D

   

  
    &

2 2

s
p

c x
Ec

AC x
 are the magnetic parameter, visco-elastic 

parameter, Prandtl number, Schmidt number and Eckert number respectively.  The relevant boundary 

conditions are: 

         (0) 0, '(0) 1, (0) 1, (0) 1;f f       

'( ) 0, ''( ) 0, ( ) 0, ( ) 0f f          as .                                                 (10) 

The physical quantities of interest in many practical applications in engineering and industrial 

processes which are observed in this study are skin friction coefficient (
2

w
f

w

C
u




 ), and Nusselt 

number ( )
( )

w
x

w

xq
Nu

K T T



. Where, 

0

w

y

u

y
 



 
  

 
is the shear stress, 

0

w

y

T
q K

y


 
   

 
the heat 

flux.  Therefore, the expressions for these quantities are: 
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   
1 1

2 2''(0) Re , '(0) Re ,x f x xf C Nu


    where, Re w
x

u x


  is the local Reynolds number. 

3. Stability Analysis 

     The stability analysis is performed to determine which solution will be more (or less) stable and 

realizable. Markin [17] was the first author who established the flow stability on dual solutions for the 

boundary-layer fluid flow of mixed convection in a porous medium. To investigate this nature of this 

fluid flow, we have considered the unsteady form of these governing equations by adding 

t

C

t

T

t

u












&, in (2 – 4) where, t  denotes the time. The following similarity variables are needed to 

remodel the above equations into ordinary differential equations. 

( , ), , ( , ) , ( , ) , .
w w

T T C Cc
c xf y ct

T T C C
           


  

    
   

                    (11) 

 
Then we have obtained the following similarity equations: 

222 2 3 3 2 4

2 3 3 2 4
2 ,

f f f f f f f f f
f k f M

        

           
         

                            

(12) 

2
2 2

2 2
Pr Pr Pr Pr 0,

f f
f s Ec

  


   

     
     

    
                                             (13) 

2

2
0.

f
Scf Sc Sc

  


  

   
   
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                                                                          (14) 

The relevant boundary conditions are: 

2

2

(0, )
(0, ) 0, 1, (0, ) 1, (0, ) 1;

( , ) ( , )
0, 0, ( , ) 0, ( , ) 0.

f
f

f f


    



 
   

 


   



   
     

 

                                             (15) 

For the check of stability, we consider the steady flow solutions 0 0( ) ( ), ( ) ( )f f       and 

0( ) ( )    which satisfy the boundary value problem (7)-(10) and can be obtained by putting 

0  . Following Markin [17] and Dey and Borah [22], we  have taken the following perturb 

equations:  

0 0

0

( , ) ( ) ( , ), ( , ) ( ) ( , ),

( , ) ( ) ( , ),

f f e F e G

e H

 



           

      

 



   

 
                                        

(16) 

where, is the unknown eigen-value parameter, and ( , ), ( , )F G    and ( , )H   are small related to 

the steady flow solutions. Applying equation (19) in equations (15)-(17) and then using 

0 0( ) ( ), ( ) ( )F F G G     and 0( ) ( )H H  , then we have got the following set of eigen value 

problem: 

 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

''' 2 ' ''' ' ''' 2 '' '' ' 2 ' ' ''

'' ' 0,

iv ivF k f F F f f F f F F f MF f F f F

F f F

         

  
      

(17) 

   0 0 0 0 0 0 0 0 0 0 0 0'' Pr ' ' Pr ' ' Pr 2Pr '' '' 0,G f G F s f G F G Ecf F                       (18) 
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   0 0 0 0 0 0 0 0 0 0'' ' ' ' ' 0,H Sc f H F Sc f H F ScH                                               (19) 

the  boundary conditions are:  

 

0 0 0 0

0 0 0 0

(0) 0, '(0) 0, (0) 0, (0) 0;

'( ) 0, ''( ) 0, ( ) 0, ( ) 0.

F F G H

F F G H

   

       
                                                       (20) 

 
        For particular values of flow parameters, the corresponding stability of the steady flow solutions 

0 0( ) ( ), ( ) ( )f f       and 0( ) ( )     are obtained by smallest eigen values  and 0 0,F G and 

0H  recognize the initial disturbance of equation (19). The smallest positive eigen value recognizes 

stable flow. Following Harish et al. [23], the boundary condition 0 '( ) 0F   is reduced to 0 ''(0) 1F 

for getting achievable eigen-values.  

4. Methodology 

Following Dey and Hazarika [24] and Dey and Chutia [25], the “MATLAB routine bvp4c solver 

scheme” is adopted to solve the equations [(7)-(9)] and [(17)-(19)] with their respective boundary 

conditions (10) and (20). It works out the results numerically by taking finite difference codes and 

resolving the error indirectly. The users have to put their system of equations into a new system by 

launching new variables as the following: 

 

1 2 3 4 5 6 7 8, ' , '' , ''' , , ' , & ' .f d f d f d f d d d d d            
 
So, we have achieved first order equations of system: 

2 2

2 4 3 2 1 3 2 4
4 1 2 2 3

1

2

3 4 5 6 6 2 5 3 1 6 7 8

8 2 7 1 8

(2 ) ( )
' , ' , '

, ' ; ' , ' Pr( ); ' ,

' ( ).

k d d d d d d Md d
d d d d d

kd

d d d d d sd d Ecd d d d d

d Sc d d d d

    
  

     

 

 

The relevant boundary conditions take the following form: 

 

                0(1), 0(2) 1, 0(5) 1, 0(7) 1; 1(2), 1(3), 1(5), 1(7).d d d d d d d d    

4. Results and Discussion 

In this investigation, we have denoted the first solution (during steady case) as solid line and the 

second solution which is responsible for time-dependent solution as dotted line. A special stress is 

given on nature of dual solutions with different involving flow parameters of this problem. 

The figures (2) and (3) are prepared to illustrate the effects of Hartmann number (M) on the 

velocity and temperature of the fluid motion with Pr=13.4 (sea water), Sc= 0.61 and k=0.22. It is seen 

in Fig. 2 that the magnetic parameter ‘M’ reduces the velocity of fluid flow during time free case, but 

it enhances the speed of the fluid during time dependent case (second solution). Physically, it can be 

attributed that the transverse magnetic field on the electrically conducting fluid motion generates a 

resistive type force called “Lorentz force” and consequently fluid’s motion reduces. Further, the first 

solution clearly shows more stability over the second solution. Also, the width of the momentum 

boundary layer for first solution (during steady case) is lesser than the second solution (during 

unsteady case). The strong magnetic field (enhancing values of M) elevates the temperature of the 

fluid flow (during time independent case) until thermal equilibrium stage is reached (Fig. 3). Thus, we 

can conclude that for enhancing the temperature of a system, the Lorentz force plays a major role. On 
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the other hand, the second solution, dependent on time, shows an opposite nature with the first 

solution.  

 
Fig.2 Velocity profile '( )f   against   for incremental values of magnetic parameter (M). 

The visco-elasticity of fluid flow is exhibited by the parameter (k) and its effects on flow 

characteristics are shown by Figs. 4 and 5 with fixed values of Pr, Sc and M=0.2. The smaller values 

of k characterizes smaller deformation rate. The figure 4 tells that first solution experiences 

acceleration due to ‘k’. But a reverse trend is noticed in time-dependent solution (second solution). 

Geometrically, we can interpret that the time-independent solution reaches its free stream region more 

sooner than time-dependent solutions. This shows that stability of first solution over second solution. 

In the figure 5, we have represented temperature profile against displacement variable for various 

values of k for the sea-water (        . Dual nature of temperature profile is seen during the 

growth of the visco-elastic parameter (k). 

 

Fig. 3 Temperature Profile ( )  against   for incremental values of magnetic parameter (M). 
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Fig. 4 Velocity profile '( )f   against   for incremental values of visco-elastic parameter (k). 

 
Fig.5 Temperature ( )  profiles against   for various values of visco-elastic parameter (k). 
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Fig. 6 Concentration ( )   profiles for various values of visco-elastic parameter (k). 

Temperature grows up with the variation of k is seen during steady flow solution (first solution) 

but its reverse nature is seen during unsteady flow solution (second solution) until thermal 

equilibrium stage is reached. Similarly, figure (6) also reveals that the visco-elastic parameter (k) 

subdues the mass deposition of the first solution but mass deposition is enhanced during unsteady 

flow (second solution). Thus, the visco-elasticity plays an important role in developing the dual 

natures.  

We have compared our numerical values of first solution of heat transfer rate at the surface of the 

sheet (Nusselt number) with previously published paper by Ghadikolaie et al. [10] to demonstrate the 

truth of our results and hence it shows a good conformity. It is also observed form table (1) that the 

magnitudes of the first and second solutions increase as the increasing values of visco-elastic 

parameter (k). 

TABLE.1 Numerical values Nusselt number ( '(0) ) for various values of visco-elastic 

parameter (k) when M=0, Sc=0, Pr=1& s=2.  

 
Value of  ‘k’   '(0) (Ghadikolaie et al. 

[10]) 

'(0) ( Present Results) 

First solution Second solution 

 

0.01 

0 

0.1 

0.2 

1.334722 

1.150370 

0.993877 

1.3278 

1.1627 

0.9963 

2.1776 

2.0481 

1.5048 

 

 0.05 

0 

0.1 

0.2 

1.340277 

1.155672 

0.998583 

1.3393 

1.1738 

0.9953 

2.1844 

2.0540 

1.5069 

 
TABLE.2 Numerical values of physical quantities for various values of the Prandtl and Schmidt 

numbers when                 .  

 
 

Pr 

 

Sc 
              

First solution Second solution First solution Second solution  

0.015  

0.22 

0.2283 0.2466 0.3485 0.5292 

7 6.6394 6.4958 0.3500 0.5383 

13.5 10.3859 9.2818 0.3501 0.5389 

 

13.4 

0.22 10.6339 9.6064 0.3485 0.5292 

0.30 10.6355 9.4763 0.4001 0.6522 

0.60 10.6356 9.4674 0.5959 1.0942 

 
From the table (2), it is perceived that the values of Nusselt number and Sherwood number for both 

the solutions enhance from the noble gas (        ) to sea-water          .  In the same way, 

The values of mass accumulation rate (        boosts up during both the cases from the hydrogen 

          to water vapour          . But, it reduces the second solution of the Nusselt number. 

The table (3) shows the nature of flow stability and it is observed that the smallest positive eigen-

values recognize an initial decay of disturbances on the flow and hence the flow will be stable and the 

smallest negative eigen-value characterizes an initial growth of complexity on the flow which give 

unstable flow. From this study, we have concluded that the first solution i.e., the solution occurred 



Debasish Dey  and Rupjyoti Borah 

International Journal of Thermofluid Science and Technology (2021), Volume 8, Issue 2, Paper No. 080203 

10 
 

during steady flow case is stable and the second solution which is dependent on time is 

unstable and not physically achievable.  

TABLE.3  Numerical values of smallest eigen-value   when 0.5&Pr 0.71M    for various 

values of k. 

 
 

Visco-elastic parameter 

(k) 

Smallest eigen- value ( ) 

First solution Second solution 

0.2 

0.6 

0.8 

0.1398 

0.0224 

0.0222 

-0.0559 

-0.0221 

-0.0220 

 
The Reynolds number (Re) has a vital role in the fluid dynamics because it helps to predict the 

flow pattern in different fluid flow situations. Again, a low Reynolds number indicates laminar flow 

and a high Reynolds number gives turbulent (unstable) flow. The following table-4 is established for 

the effects of Reynolds number in the skin friction coefficient. For the laminar flow i.e., Re<2000, the 

skin friction coefficient for the time-independent solution (first solution) reduces and an opposite 

trend is noticed during second solution. For turbulent flow i.e., Re>4000, only time-dependent 

solution (second solution) varies and enhances with Re but, the numerical values of the first solution 

remain constant.  

TABLE-4. Numerical values of skin friction coefficient ( )fC for various values the Reynolds 

number (Re) when the other flow parameters are fixed. 

 

Reynolds number (Re) 

Skin friction coefficient ( )fC  

First solution Second solution 

10 -0.0384 -0.0132 

10
2 -0.0385 -0.0118 

10
3 -0.0386 -0.0112 

4200 -0.0172 -0.0059 

4500 -0.0172 -0.0053 

5000 -0.0172 -0.0050 

5. Conclusion 
We have seen that the dual solutions (first and second solutions) exist up to a certain region of 

the dimensionless variable   (0 < <5 ) for various values of flow parameters. All the profiles satisfy 

the far field boundary conditions asymptotically and exhibit dual nature solutions. From the stability 

point of view, the first solution is stable and physically achievable. The following conclusions are 

made from this study:  

 The visco-elastic parameter helps to enhance the motion and temperature of the fluid during 

steady case. But, it lessens the mass deposition of the fluid during steady case. 



Debasish Dey  and Rupjyoti Borah 

International Journal of Thermofluid Science and Technology (2021), Volume 8, Issue 2, Paper No. 080203 

11 
 

 During steady case (first solution), the magnetic parameter plays an important role to 

normalize the motion of the fluid. But, it helps to raise the temperature of the system. In case 

of time dependent solution, it acts on the flow as opposite manner with steady case.  

 For the laminar flow ( Re 2000 ), the drag force on the surface for time-independent case is 

reduced due to amplifying values of Re . But, it enhances the drag force for the time-

dependent case. So, the first solution (during steady case) is more effective than the unsteady 

case.   
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