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Abstract 

The current investigation attempts to address the peristalsis exhibited by a Jeffrey fluid 

through channels with curvature and compliant walls. The flow of fluid is exposed to an 

external magnetic field. Moreover, variation of the viscosity of the fluid with the spatial 

coordinate is considered. Long wavelength and small values of Reynolds number are 

considered for the mathematical modeling of the problem under scope. The system of 

differential equations thus obtained is non-linear, the solution for which is obtained by the 

method of perturbation for small values of variable viscosity. The authors have provided 

special emphasis on the influence of pertinent parameters on velocity and trapping 

phenomenon. The results obtained suggest that as the channel changes from straight to 

curved, the velocity profile bends away from the center of the channel. Further, the trapped 

bolus volume is seen to be reducing with decrease in the Hartmann number. 

Keywords: Curved channel; Hartmann number; Jeffrey parameter; peristalsis; variable 

viscosity. 

1. Introduction 

 Peristaltic mechanism is the mode of transport of various materials by the continuous 

contracting and relaxing waves moving along the walls of a distensible tube. This mechanism 

facilitates the transportation of various biofluids, for example, the motion of chyme, transport 

of the food bolus through the esophagus, movement of spermatozoa and circulation of blood 



Manjunatha  et al. 

International Journal of Thermofluid Science and Technology (2020), Volume 7, Issue 2, Paper No. 070203 

2 
 

through the arteries. Owing to its applications in industrial and medical fields, peristalsis has 

gained significant importance among researchers in the past few years. Among the various 

fluid models available, the usage of non-Newtonian models is more advantageous in 

physiology and industries. Inspired by this, the first investigation on peristaltic mechanism 

for a non-Newtonian fluid was carried out by Raju and Devanathan using the power law 

model [1]. Following this, substantial research has been conducted for various models 

representing the non-Newtonian fluids. One such model, the Herschel-Bulkley model, was 

used by Rajashekhar et al. [2].  They observed that for smaller values of yield stress, the 

power law and Herschel-Bulkley models show similar behavior. Effects of heat transfer on an 

inclined tube for a Bingham fluid with different peristaltic wave forms were studied by 

Vaidya et al. [3,4]. For non-Newtonian fluids, heat transfer properties have been investigated 

with the considerations of slip conditions and wall properties [5-7]. 

 

Nomenclature 

'a  wave amplitude   t  time 

0B  applied magnetic field   u  dimensionless radial velocity 

c  wave speed    w  dimensionless axial velocity 

fC  skin-friction coefficient  x  dimensionless axial distance 

'd   half-width of the curved channel
 

Greek symbols  

1E
 

elastic tension in the walls    wave number 

2E   mass per unit area     amplitude ratio 

3E  coefficient of viscous damping   wavelength 

H   Hartmann number   
1  Jeffrey parameter 

k  curvature parameter   ( )r  viscosity varying with channel width  

p  dimensionless pressure    coefficient of variable viscosity  

r  dimensionless radial distance    dimensionless streamline function     
*r   radius of the curved channel    fluid density    

Re  Reynolds number     electrical conductivity of the fluid  

 

In the aforementioned studies, the mechanics of peristalsis have been studied for 

fluids flowing through different two-dimensional, symmetric and axisymmetric planar and 

straight channels. However, this turns out to be inadequate for physiological conduits and 

glandular ducts where the geometries are curved, and curvatures have considerable impact on 

the fluid flow. In studies on industrial and physical processes, the curvilinear coordinates of 

the curved channel lead to complex mathematical computations. This has motivated many 

studies on peristalsis through a curved channel. The peristaltic mechanism of a viscous 

incompressible fluid was investigated by Ali et al. [8] where the fluid flow was considered 

through a rectangular curved channel. Extending upon their initial investigations, they also 

considered peristalsis for a third-grade non-Newtonian fluid in a curved channel, where it 

was found that the trapped bolus lost its symmetry in a curved channel and divides itself into 

two asymmetrical parts [9]. Through studies conducted on Newtonian fluids with focus on 

heat transfer through a curved channel, it was found that the heat transfer occurred at a 

slower rate than in a straight channel [10]. Investigations conducted on the transfer of heat 
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and mass during the peristaltic mechanism of various non-Newtonian fluids within curved 

channels with compliant walls and suitable slip and no-slip conditions are found in the 

literature [11-14]. 

The consideration of magnetic field in industrial applications as well as biomedical 

engineering has garnered the interest of many researchers in the magnetohydrodynamic flows. 

In addition, magnetohydrodynamics has proved to be extremely useful during surgeries in 

reducing the bleeding, treatment of cancers, removal of the arterial blockages, and extraction 

of molten metals from non-metallic substrate among other applications. Recent developments 

in the field of medicines have made it possible for the magnetic flux to increase the 

effectiveness and precision in the drug delivery systems. Influenced by the widespread 

applications of magnetic field applied externally and the realistic usage of curved channels, 

studies have been conducted on the magnetohydrodynamics of peristaltic mechanism through 

curved geometries. Hayat et al. [15] considered a third-grade fluid in a compliant walled 

curved channel to examine the Dufour and Soret effects. In their studies, they observed that 

the Dufour and Soret numbers have an increasing effect on concentration and temperature 

profiles respectively. The combined effect of slip conditions and radial magnetic field was 

explored by Shehzad et al. [16]. Their results indicated that in curved conduits, the velocity 

profiles along the axis were asymmetric about its central line. Further, effects of magnetic 

fields on the peristaltic flow of a third-grade fluid through a curved channel were studied by 

Hayat et al. [17]. The MHD peristaltic transport of various Newtonian and non-Newtonian 

fluids through curved channel have been studied with varying boundary conditions [18-24]. 

In the studies mentioned above, the physical fluid properties, especially viscosity, are 

considered constant and independent of the spatial variables. This assumption fails in giving 

better insight to the peristaltic mechanism in the digestive tract, bloodstream in vessels of 

small radius, just to mention a few, where the viscosity is found to be varying across the 

thickness of the channel [25-30]. Owing to this, Vaidya et al. [31] examined the impact of 

variable liquid properties on peristalsis observed for a Rabinowitsch fluid within a uniform 

compliant-walled channel. Their results indicate that variable viscosity enhances the fluid 

velocity. It was also found that an increased variable viscosity led to an increase in the 

coefficient of skin friction for dilatant fluids. However, pseudoplastic and Newtonian fluids 

displayed decreased coefficient of skin friction with increased variable viscosity. Manjunatha 

et al. [32,33] have investigated the influence of variable liquid properties of a Jeffrey fluid 

through a uniform channel as well as elastic tube subject to porous boundary conditions. The 

concept of variable viscosity has also been extended for peristaltic mechanisms in the curved 

channel by Hayat et al. [34] in their magnetohydrodynamic studies of Bingham plastic fluid. 

The above studies indicate that an investigation on the peristalsis of a non-Newtonian 

fluid which exhibits variable viscosity and is flowing through a curved channel is very 

essential to completely understand the behavior of many biological and physiological fluids. 

As per the author’s knowledge, very little studies have been conducted in this direction. Thus, 

the current work intends to showcase the impact of varying viscosity of Jeffrey fluid flowing 

through channel with significant curvature, which is exposed to a radial magnetic field. The 

governing differential equations, after using small Reynolds number and long wavelength 

approximations, are solved through perturbation method for small values of variable viscosity. 

Further, axial velocity profiles, pressure rise versus flow rate, skin friction coefficient and 

trapping phenomenon are plotted and analyzed for different values of the pertinent 

parameters. 

 



Manjunatha  et al. 

International Journal of Thermofluid Science and Technology (2020), Volume 7, Issue 2, Paper No. 070203 

4 
 

 

2. Mathematical Model of the Problem 

The half width of the curved channel is assumed to be 'd . The channel is converted 

into a circle with center O denoted by and radius denoted by *r . The behavior of the fluid is 

defined by the Jeffrey fluid model and the flow is generated by the movement of sinusoidal 

waves of velocity c along the flexible walls of the curved channel. The radial direction of 

fluid flow is r , while the axial direction is denoted by x . The velocity components in the 

radial and axial directions are ( , , )u r x t and ( , , )v r x t  respectively. The fluid flow is subjected 

to an external radial magnetic field (see Figure 1). 

 

Fig. 1. Geometry of the problem. 

The geometry of the peristaltic wave is given by: 

2
( , ) ' 'sin ( ) ,r h x t d a x ct





  
       

  
        (1) 

where h indicates the displacements of the upper and lower walls respectively. 

 

The fluid becomes electrically conducting when it is subjected to a radial magnetic 

field B, given by 

B 0

*
, 0, 0 .

B

r r

 
 

 
                        (2) 

From Ohm’s law, we have 

JB

2

0

* 2
0, , 0 ,

( )

B u

r r

 
 

 
                         (3) 

where J is the current density.  

 

For the problem under consideration, the equations of conservation of momentum and 

mass are given below  

*

* *
0,

v r u v

r r r x r r

 
  

   
                   (4)  
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* 2
*

* * * *

*

*

1
[( ) ]

,

xx
rr

xr

Sv v r u v u p
v r r S

t r r r x r r r r r r r r

Sr

r r x


     

       
         




 

                    (5) 

* *
* 2

* * * * 2

2*

0

* * 2

1
[( ) ]

( )

.
( )

rx

xx

u u r u u uv r p
v r r S

t r r r x r r r r x r r r

S B ur

r r x r r





     
      

         


 

  

                (6) 

where * * *, and m C are the elastic parameters of the wall (elastic tension in the walls, 

mass per unit area and the coefficient of viscous damping respectively). 

The components of the extra stress tensor S for a Jeffrey fluid are given 

by
2 2

22

2 2

1

( )
1 ,

1 '
xr

cr
S

d r x x r r x

    




         
                 

                                     

(7) 
2

2

1

2 ( )
1 ,

1 '
xx

cr
S

d r x x r x r

   



        
    

        
        (8) 

2

2

1

2 ( )
1 ,

1 '
rr

cr
S

d r x x r x r

   



       
     

        
          (9) 

where
'd




 is the wavenumber and 
1 2and    are the Jeffrey parameters. 

The boundary conditions are as described below: 

0, at ,u r h                                            (10) 

2 2
* * *

2 2
.

p
m C

x x x t t


     
    

     
                          (11) 

The above dimensional parameters are rendered non-dimensional by the following: 

* * * 2
* * * * * *

2 * 3 * 3
* 2 0

1 23 2

* 3

3 2

'
, , , , , , , , ,

' ' ' ' ( )

'' ' ' '
, ,Re , , , ,

' ( ) ( ) ( ) ( ) ( )

'
,

( )

ij

ij

x r ct u v h r d p
x r t u v h k p

cd d c c d d r c

d S Ba cd d m cd
S H E E

d c r r r c r r

C d
E

r




   

 


       

 

        


     



     (12) 
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where the meaning of the non-dimensional parameters are mentioned in the 

nomenclature section. 

We introduce the stream function ( , , )x r t as 
*

*
, .

r
u v

r r r x

  
  

  
                                   (13) 

On using the above dimensionless parameters and the assumptions of long 

wavelength and low Reynolds number, we obtain (on dropping the asterisk for simplicity) 

0,
p

r





                                                       (14) 

2 21
( ) ,

( ) ( )

r
rx

p
r k S H

x k r k r k r k

 
       

          (15) 

 1 sin 2 ( ) ,h x t                                (16) 

0 at ,r r h                                     (17) 

3 3 2
2 2

1 2 33 2 2

1
( ) ,

( ) ( )

r
rx

k h h h
E E E r k S H

r k x x t x t r k r k r k

    
                 

          

(18)

2

2

1

( )
.

1
rx

r
S

r

 



 


 
                                (19) 

From Eqs. (14) and (15), we obtain 

2
2 2

2

1

1 ( )
( ) 0.

( ) 1 ( )

rr
r k H

r r k r r k r k

 



     
    

       
                 (20) 

Here, ( )r is the variable viscosity which is expressed as 

 
2( ) 1 ( ), 1,rr e r O                                                 (21) 

 

where is the coefficient of variable viscosity. 

The choice of  (variable viscosity) here is justified physiologically because normal 

person or animal of similar size takes 1 − 2L of the fluid every day. Also 6 − 7L of the fluid 

is received by the small intestine as secretions from salivary glands, stomach, pancreas, liver 

and small intestine itself. This indicates the dependence of fluid concentration upon the 

spatial coordinate  and hence the choice of μ in the present analysis is appropriate [35]. 

3. Solution to the Problem 

 
 The non-linear system Eq. (20) consisting of the boundary conditions given by Eqs. 

(17) and (18) is solved for   (stream function) by perturbation technique for small values of 

the variable viscosity . The solution is found up to the first order. As k , the results are 

in good agreement with the studies available in the literature for a planar channel.  

 

The perturbed series solution for  is considered as 
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2

0 1 ( ).O                                          (22) 

 

On substituting the above in Eq. (20), the expression for  is obtained as follows 

       

 
 

   

 

 
 

   

 

 

 

 

1 2 11 2

1 1

2

2 2

2 2

4 5 6 8

1

9 4 1 1 2

1 1 1 1

1

5 2 2 2

2 2 1 2

3

6 2

1

ln( )
( ) 1

1 1 2 1

ln( )
1

1 1 2 1

2
6 1

m m mm m

m m

m

m m

c r k k c r k k c r k k c r k

r k k r k r k
c r k c m m

m m H m

r k k r k r k
c m m

m m H m

r k k r k
c

H

 











                
     

   
     

     

   
   

     

 
 

   

2

2

1

.
2 1 H

 
 

   

(23) 

From Eq. (13), we get the expression for axial velocity as 

     
 

   

   
    

   

     
 

  

   

1

2

1 2

1

1 4 8 6 2 2

1 1

1 1 1

2 5 9 2

1 1 1 1

1 1 2

4 1 1 5 2 2

2

2

2 2 1

3 2
2 1

6 1 2 1

ln( ) 1 1

2 1 1 1

ln( ) 1
1 1

2 1

1

1 1

m

m

m m

r k k
u m r k c c c r k

H H

k m r k m r k
m r k c c

m m m H

k m r k
c m m r k c m m r k

m

m r k

m m

 
 




 







 

   
         

      

    
     

    

 
     



 


   2
.

H





(24) 

The pressure rise per wavelength ( )P and skin friction coefficient ( )fC are evaluated 

using the following expressions: 

1

0

,
dp

P dx
dx

                                             (25) 

1
.f

r h

u u
C

r r k 

  
  

  
                                  (26) 

 

4. Results and Discussion 

In this section, the solution obtained above is analyzed through graphical representations. 

Graphs are plotted for the velocity field ( )u , pressure rise per wavelength ( )P , skin friction 
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coefficient ( )fC and streamline patterns to discuss their behavior in the curved channel with 

variation in the corresponding important parameters. More importantly, we focus on the 

impact of variation of the curvature parameter ( )k , variable viscosity ( )  and magnetic 

parameter (Hartmann number H ). The values used to obtain the graphs are 

10.2, 3, 1,k    1 2 33, 0.2, 0.02, 0.01, 0.01H E E E     .  

 
 

 
Fig. 2. Variation of axial velocity with (a) k , (b) H , (c)  and (d) 

1 . 

 

Figs. 2(a)-(d) represent the velocity profile in the axial direction. The graphs clearly 

indicate that the velocity profile displays parabolic geometry, with peak velocity seen in the 

central section of the channel. Another important observation is that for curved channels, the 

velocity field is asymmetric about the center of the channel, as opposed to the velocity field 

for straight channels. However, as seen in Fig. 2(a), the profile shifts towards the channel’s 

center as it becomes straighter, that is, as k  . The graph also reveals that the fluid 

velocity rises with the curvature parameter. Fig. 2(b) showcases the influence of Hartmann 

number on the axial velocity. The velocity sees a decrease with increased magnetic field 

intensity. In most of the biological fluids, this behavior is due to the development of Lorentz 

forces owing to exposure to a magnetic field, which opposes the fluid flow. The impact of 

variable fluid viscosity on the velocity field is sketched in Fig. 2(c). It is seen that the 

increasing values of variable viscosity reduce the fluid velocity till a point in the channel, 

after which it increases. This nature can be accounted for by the exponential term defining 

the variable viscosity. The influence of varying Jeffrey parameter on the velocity of the fluid 
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can be observed in Fig. 2(d). The increasing values of 
1  is found to have an increasing effect 

on the axial velocity. Moreover, on considering 
1 0,   the corresponding results for a 

Newtonian fluid can be obtained.  

 
Fig. 3. Variation of axial velocity with (a)

1E , (b)
2E and (c)

3E . 

 

The effect of wall properties of the curved channel on axial velocity is depicted in Fig. 

3. It is evident from the graph that there is an increase in velocity associated with an increase 

in 
1E  and 

2E .This can be reasoned by the fact that as the parameters responsible for 

elasticity and mass per unit area increase, the fluid flows easily, thus boosting its velocity. 

However, if the damping forces 
3( )E  are increased, the fluid velocity drops. 

 The graph for pressure rise versus rate of flow is plotted in Figs. 4(a) and 4(b) for 

varying values of H and  . From these figures, a critical value of flow rate can be observed, 

after which the pressure rise changes from positive to negative. Moreover, the parameters 

have an opposing effect on the pressure rise before and after this critical value of flow rate. 

Fig. 4(a) depicts a drop in the pressure rise for increasing values of H above the critical point. 

An opposite trend is seen in Fig. 4(b) for higher values of  .  
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Fig. 4. Variation of pressure rise with (a) H and (b)  . 

 

 
Fig. 5. Variation of skin-friction coefficient with (a) H and (b)  . 

 

 Figs. 5(a) and 5(b) show the impact of H and   on the physical quantity of skin 

friction coefficient. Higher values of H raise the magnitude of skin friction coefficient (see 

Fig. 5(a)). The effect of increasing values of   on fC can be observed in Fig. 5(b), where the 

magnitude of fC is diminished. It is worth noticing that the effect of these parameters are 

opposite for 0fC  and 0fC  . 

 In general, the streamlines assume the form of the boundary walls. However, in some 

cases, the streamlines were observed to divide and form a circular bolus which gets trapped 

in the fluid motion. This is the commonly known phenomenon of trapping. The trapped bolus 

gets encapsulated by the peristaltic wave and moves at the same speed as the wave. Impact of 

the parameters under consideration on these boluses are depicted in Figs. 6-12. These figures 

indicate that in a curved channel, the trapped bolus is asymmetric about the center of the 

channel and divides into asymmetrical parts. 

 
Fig. 6. Streamlines for (a) 3k  and (b) 3.5k  . 
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Fig. 7. Streamlines for (a) 3H  and (b) 4H  . 

 

 
Fig. 8. Streamlines for (a) 0.01  and (b) 0.02  . 

 
Fig. 9. Streamlines for (a) 1 1  and (b) 1 1.5  . 
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Fig. 10. Streamlines for (a)

1 0.02E  and (b)
1 0.03E  . 

 

 
Fig. 11. Streamlines for (a)

2 0.01E  and (b)
2 0.03E  . 

 
Fig. 12. Streamlines for (a) 3 0.01E  and (b) 3 0.04E  . 

 

From Fig. 6, the trapped bolus expands with an enhancement in the curvature of the 

channel. Physically, this signifies that the phenomenon of trapping has a higher likelihood of 

occurrence in a straight channel compared to a curved channel. 

 Fig. 7 describes the impact on the streamlines pattern due to variation in H . It shows 

a shrinking of the trapped bolus when the Hartmann number is increased. Fig. 8 elucidates 

the influence of   on trapping phenomena. It is observed that the trapped bolus grows in the 

upper half of the curved channel. Meanwhile, in the lower half of the channel, the streamlines 
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get compressed and the bolus size decreases for higher values of  . The streamlines plotted 

in Fig. 9 for varying values of the Jeffrey parameter indicate that it has an expansion effect on 

the volume of the trapped bolus. 

 Figs. 10-12 shows the variation in the bolus volume due to the wall 

properties
1 2 3, and E E E . The observations reveal that 

1E  and 
2E increase the volume of the 

trapped bolus whereas 
3E decreases the volume. 

  

5. Conclusion 

 The current investigations attempt to explain the impact of variations in viscosity on 

the peristaltic mechanism exhibited by a non-Newtonian Jeffrey fluid through a channel with 

significant curvature when exposed to an external magnetic field with radial orientation. 

Furthermore, the channel walls considered were compliant. The fluid viscosity was assumed 

to be varying in proportion to the width of the channel. Perturbed solution for velocity along 

the axis has been obtained for small values of variable viscosity . Some of the important 

outcomes of the investigation are outlined below: 

 

 Velocity is asymmetric about the center of a curved channel. However, the velocity 

profile shifts to the center as the channel becomes straighter. 

 Variable viscosity has a decreasing impact on fluid velocity closer to the lower 

channel wall. 

 The pressure rise enhances above the critical value of flow rate with higher values of 

Hartmann number. 

 The bolus confined in the fluid motion expands in proportion to higher curvature 

parameter and Jeffrey parameter values. 

 Variable viscosity has a dual effect on the bolus size, where it is enhanced in the 

upper half but diminishes in the lower half of the curved channel. 

 The axial velocity and bolus size is increased with the wall property parameters 
1E  

and 2E , whereas 3E decreases them. 
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