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Abstract 

In the present research article, modeling and computations are presented to introduce the 

novel concept of relaxation-retardation viscous dissipation and hyperbolic time variation 

boundary conditions on the magnetohydrodynamic transient flow of Oldroyd-B nanofluid 

past a vertical stretched plate for the first time. In the present work, firstly we implement 

Buongiorno’s model to illustrate Brownian motion and thermophoretic diffusion which take 

vital role in heat and mass transportation process. Nonlinear non-dimensional governing 

equations are solved by fourth order Runge-Kutta method along with shooting technique. We 

investigate the behavior of influential variables on the velocity, thermal and solutal fields 

through graphical illustrations. Our results indicate that relaxation and retardation Deborah 

numbers exhibit completely reverse trend in the flow field. Especially, augmented relaxation-

retardation viscous dissipation invigorates the temperature gradient. The results of the current 

theoretical study may be instrumental for worthful practical applications. 

Keywords: Relaxation-retardation viscous dissipation; MHD; Unsteady flow; Oldroyd-B 

nanofluid; Hyperbolic time varying boundary conditions. 

1. Introduction 

 Authors pay sincere thanks to the researchers for their precious contributions through 

fair, honest and expeditious investigations to the important progress achieved in the 
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accelerated research world over the past decades. Out of numerous dedicated contributions 

one remarkable achievement of Maxwell [1] is the development of Maxwell model.  

 

Nomenclature 

( , )u v  velocity components in (x, y) directions 0a   is a constant   

 wu x  plate velocity     
a


   ratio parameter 

 ,T C
 
fluid ( temperature, concentration)   

f  kinematic viscosity 

 ,T C   ambient ( temperature, concentration) 
f    thermal diffusivity 

 ,w wT C  surface ( temperature, concentration)  
f   density of fluid 

 F    dimensionless stream function     non-dimensional vertical distance 

 F   differentiation of  F  with respect to   Pr



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 1 2,   relaxation time and retardation time     p pp f
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capacity ratio 
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B
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1
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1

a
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
 


Deborah number for relaxation time  

2
2

1

a

t


 


Deborah number for retardation time   

   

2

2

1

w
m

p wf

u
Ec

c T T



 

 modified Eckert number    

Subscripts       

f  fluid      

w  quantities at wall 

  quantities at  free stream 

This is a rate type model used for evaluating the viscoelastic nature of materials. 

Ignoring the possibility of incompressible nature of liquid is another important feature of this 

model. It is indeed Oldroyd [2] after Maxwell, developed a constitutive relationship for 

describing actual behavior of nonlinear liquids. The constitutive relations of Oldroyd-B fluid 

characterizes the influence of both relaxation and retardation times. The Oldroyd-B model 

developed by Oldroyd becomes Maxwell model without retardation time. Many noteworthy 

researchers manoeuvred strenuous endeavors to study the flow and heat transfer of Oldroyd-
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B fluid under different conditions and configurations. The outcomes of their investigations 

have been addressed and utilized by many others. Bhatnagar et al. [3] showed in their study 

how free stream velocity influences the flow of an Oldroyd-B fluid due to a stretching sheet. 

The effect of decay of a potential vortex in the flow of an Oldroyd-B fluid was investigated 

by Fetecau andFetecau [4]. The stagnation point flow of an Oldroyd-B fluid past a stretching 

sheet was studied intensively by Sajid et al. [5]. Zheng et al. [6] established exact solutions 

for MHD flow of generalized Oldroyd-B fluid due to an infinite accelerating plate. In their 

study, the fractional calculus approach is implemented to establish the constitutive 

relationship of the Oldroyd-B fluid. The solutions are developed by means of Fourier sine 

and Laplace transforms. Hayat et al. [7] examined three-dimensional convective flow of an 

Oldroyd-B fluid over a stretched surface. Their study addressed the convergence of series 

solutions by the homotopy analysis method (HAM). Abbasbandy et al. [8] analyzed the 

numerical and analytical solutions for Falkner-Skan flow of MHD Oldroyd-B fluid. The 

relaxation and retardation times have opposite effects on the velocity components were the 

results of their investigation. Interestingly, an unsteady helical flow of Oldroyd-B fluids was 

studied by Jamil et al. [9]. Oscillating motion of an Oldroyd-B fluid between two infinite 

circular cylinders was analyzed by Fetecau et al. [10]. Impact of Cattaneo-Christov heat flux 

in MHD flow of Oldroyd-B fluid with homogeneous-heterogeneous reactions was 

investigated by Hayat et al. [11]. Hayat et al. [12] applied non-Fourier heat flux theory to 

study on 2D stratified flow of an Oldroyd-B fluid with chemical reaction. They declared in 

their study that temperature distribution has opposite behavior for thermal relaxation time and 

variable thermal conductivity parameter. Simultaneous impacts of mixed convection and 

nonlinear thermal radiation in stagnation point transient flow of Oldroyd-B fluid was 

discussed by Hayat et al. [13]. They observed that the behavior of thermal relaxation and 

retardation times on velocity distribution are opposite. They also observed that temperature 

ratio and radiation parameters augment the temperature distribution. Zhang et al. [14] 

examined the flow and heat transfer of an Oldroyd-B nanofluid thin film over an unsteady 

stretching sheet. The influences of various relevant parameters such as unsteady parameter, 

volume fraction of Cu/Ag and Prandtl number on the flow field were explored in their study.  

Here we pronounce that the concept of nanofluid is developed by Choi [15] where 

the proper dilution and suspensions of the poor heat transfer fluids such as oil, water and 

ethylene glycol takes place with high thermal conductivity material nanoparticles like

2 3 2 2 2Cu,CuO,Al O ,TiO ,SiO ,ZrO ,ZnO . Nanofluid due to its unique and exceptional 

characteristic properties ensures a substantial upgradation of heat transfer of conventional 

(poor heat transfer) fluids. Consequently, such fluids has tremendously overwhelming the 

demand of heat removal in cooling applications.  The most promising and inevitable 

diversified applications of nanofluids today include process industries, heat exchangers, 

cooling towers, transportation, magneto-optical devices, biomedical-therapeutic treatment 

and developing the best quality lubricants and oils and many others. Keeping the above 

astounding relevance into mind, many researchers succeeded in finding different models, 

phenomena and mechanisms theoretically and experimentally that would enhance the heat 

transfer capability of various nanofluids. Many authors have also studied the behavior of 

different nanofluids subject to several flow configurations and physical boundary 

conditions. Xuan and Li [16] studied the flow and convective heat transfer of nanofluids. 

Further, Buongiorno [17] introduced a two-phase model comprising the role of two slip 

mechanisms namely Brownian diffusion and thermophoresis which account for the thermal 
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conductivity enhancement of nanofluids. Khan and Pop [18] analyzed the boundary-layer 

stretched flow of a nanofluid.  

Moreover, series solutions for Oldroyd-B fluid motion induced by a deforming sheet 

having exponential velocity were investigated by Hayat et al. [19]. In their study, they 

considered the wall temperature as exponentially growing function of the horizontal distance. 

Shivakumara et al. [20] analyzed thermal convective instability in an Oldroyd-B nanofluid 

embedded in porous layer. In their analysis, the authors implemented the famous Buongiorno 

model and assumed zero nanoparticle flux at the boundaries. Nayak [21] examined the 

impact of thermal radiation and viscous dissipation on three dimensional 

magnetohydrodynamic flow nanofluids by shrinking surface using Homotopy analysis 

method (HAM). It seen that there is an increase in temperature due to an increase in thermal 

radiation parameter leads to lower heat transfer rate from the surface of the sheet. Also it is 

noticed from his study that the local Nusselt number gets reduced indicating lowering heat 

transfer rate from the surface with increasing Eckert number. Nayak et al. [22] explored the 

effects of velocity slip and non-linear thermal radiation on three dimensional 

magnetohydrodynamic convective flows of nanofluids through porous media. Increasing 

values of slip parameter slow down the axial and transverse fluid velocities and that of 

temperature parameter yielding greater non-linearity in heat transfer rate from the surface are 

important outcomes of their investigation. Nayak et al. [23] studied the effect of thermal 

radiation and natural convection of three dimensional magnetohydrodynamic flows of 

nanofluids over permeable linear stretching sheet. They declared in their study that rising the 

buoyancy and radiation parameter uplift the velocity and temperature profiles respectively. 

Ghadikolaei et al. [24] showed in his study how the porous matrix and thermal radiation 

influences significantly on flow and heat transfer of Fe3O4–(CH2OH)2 nanofluids.  Hayat et al. 

[25] revealed that the heat generation parameter upgrades the fluid temperature and the 

related thermal boundary layer in the stretched flow of magnetohydrodynamic Oldroyd-B 

nanofluid. The flow of magnetized Oldroyd-B fluid over a rotating disk influenced by non-

linear radiation and activation energy was analyzed by Khan et al. [15]. In their study, they 

developed numerical solution and conveyed that temperature ratio parameter augments the 

temperature distributions in the boundary layer region. Mahanthesh et al. [27] discussed the 

nonlinear three-dimensional stretched flow of an Oldroyd-B fluid with convective condition. 

Kumar et al. [28] investigated the effect of Joule heating and viscous dissipation on three-

dimensional flow of Oldroyd B nanofluid with thermal radiation where they confirmed that 

rise in Eckert number led to the escalation of temperature fields in the entire flow domain. 

Viscous dissipation finds convenience to take place in stronger gravitational fields, 

larger planets, heavier gases in space and geological operations. Viscous dissipation is a 

partial irreversible process that generates an additional heat in the flow process due to fluid 

friction. Nayak [29] explored the nature of dissipative flow of nanofluids under the influence 

of transverse magnetic field in association with thermal radiation embedded in a porous 

medium. It is seen in his study that an increase in Eckert number increases the fluid 

temperature and the associated thermal boundary layer thickness. This leads to reduction of 

the rate of heat transfer from the stretched surface. This reduction is further decreased due to 

presence of porous medium. Therefore, the presence of porous medium acts as an insulator to 

the surface of the sheet. 

 Going through the aforementioned literature survey, it is well understood that until 

now there is only one publication about the aspect of relaxation-retardation viscous 

dissipation. Only Zhang et al. [30] studied the behavior of relaxation-retardation viscous 
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dissipation of Oldroyd-B fluid thin film. However, the impact of relaxation-retardation viscous 

dissipation on the flow of Oldroyd-B nanofluid past a stretched vertical plate associated with 

hyperbolic time varying boundary conditions has not yet studied. The aim of this study is to bridge 

such gap. The prime objective of our research is to model the Oldroyd-B nanofluid flow 

subject to relaxation-retardation viscous dissipation past a stretched vertical plate associated 

with hyperbolic time varying boundary conditions.  Heat and mass transfer process are explored 

due to Buongiorno’s model featured by aspects of Brownian motion and thermophoretic 

diffusion. The fourth order R-K method along with shooting technique is adopted as a 

numerical tool to solve the resulting nonlinear governing expressions. The characteristics of 

velocity, thermal and solutal distributions, surface drag force, heat and mass transfer rates 

well displayed and discussed. 

2. Formulation of the problem 

In In this problem we deal with the time-varying flow of Oldroyd B nanofluid past a 

stretched vertical plate. Two familiar phenomena such as thermophoretic motion and 

Brownian diffusion have been taken into account. Relaxation-retardation viscous dissipation 

is introduced. Hyperbolic time varying boundary conditions are implemented. Assume that u 

and v are respectively the velocity components in x- and y- directions where x-axis is along 

the plate and y-axis is at right angle to it as represented in Fig.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Flow geometry and the associated coordinate system of the problem.  
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The underlying boundary layer equations with the very idea of Boussinesq 

approximation and above declared assumptions are [3], [18], [26-28], [30]: 

0x yu v            (1) 

 
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The required hyperbolic time variation boundary conditions are: 
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 (Hyperbolic time variation)   (6) 

Here, u and v  are the fluid velocity components along x and y directions,  wu x  is the plate 

velocity, 0a  is a constant. 

The appropriate transformations used are    
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    (7) 

where  F  is the differentiation with respect to  . 

Using eqs (6) and (7), eqs (2-5) take the form 
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The local skin friction coefficient is written as 
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3. Solution method and validation 

In the present study, the nonlinear and coupled Eqs (8), (9), and (10) with boundary 

conditions (11) are solved numerically using Runge-Kutta-Fehlberg method with shooting 

technique for different values of parameters. Table 1 conveys the comparison of present 

results with the previously declared results of Abel et al. [33], Megahed [34] and Waqas et al. 

[35] where it is visualized that there is well and good agreement between them. The good 

agreement is related to the visualization that augmentation of Deborah number 
1  associated 

with relaxation time upsurges the skin friction significantly. 

4. Results and Discussion  

This section presents a bold and visionary analysis providing the physical 

interpretation due to the interaction of interesting assorted variables including Deborah 

numbers ( 1 and 2 ), Hartmann number M , Prandtl number Pr , modified Eckert number cmE  , 

Schmidt number Sc with flow, thermal and solutal fields. The detailed information regarding 

behaviors of velocity, temperature and concentration fields, viscous drag, Heat transfer rate 

and rate of mass transfer associated with the time-varying flow of Oldroyd-B nanofluid past a 

stretched vertical plate influenced by relaxation-retardation viscous dissipation have been 

well addressed. 

4.1  Velocity distribution  

The observation of Fig.2 indicates that controlled fluid motion is accomplished due to 

enhancement of Deborah number 1  associated with relaxation time. However, the adverse 

nature of fluid motion in response to Deborah number 2  associated with retardation time is 

visible in Fig. 3. From Figs. 2and 3 it is inferred that behavior of Deborah number 2 is quite 

opposite to that of 1 . In fact, for higher relaxation time the Oldroyd nanofluid boosts up thereby 

responsible for the decline of the motion of the Oldroyd nanofluid. On the other hand, 2

corresponds to retardation time 2 . Physically, an augmentation in retardation time upsurges the flow.  

It is well agreed with the observation in Mustafa et al. [31]. Fig. 4 has rightly stated that increase 

in Hartmann number M contributes decelerated motion and the related shrinking velocity boundary 

layer. Please bear in mind that the flow over the plate is restrained by Lorentz force which is 

generated due to the interaction between applied magnetic field and the conducting fluid.  

4.2  Temperature distribution  

The outcomes of the present analysis reveal many interesting aspects of the heat 

transfer in a flow of Oldroyd-B nanofluid under the impact of various pertinent thermal parameters. 

We start with Fig. 5 describes that fluid with high Prandtl number accounts for abatement of fluid 

temperature     and upgradation of heat transfer from the plate. The basic point is that Prandtl 

number has a reverse association with thermal diffusivity. So it is not surprised that for high Prandtl 

fluid (having larger value of Pr ) momentum diffusivity dominates over thermal diffusivity 

which responds to decaying of temperature. This is an excellent agreement with Hayat et al. 

[32]. 
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Fluid temperature     and the related layer thickness eventually develop the ascending 

trend in response to rising modified Eckert number mEc  (portrayed in Fig. 6). In fact, increasing 

mEc contributes stronger viscous dissipation associated with the converted internal energy, 

which in turn boosts the temperature. Further, increase in Hartmann number M  (visualized in Fig. 

7) causes establishment and development of escalated non-dimensional fluid temperature    and 

the related thermal - layer thickness. In fact, greater Lorentz force due to larger M produces 

restrained fluid flow which in turn builds up more heat in the boundary layer.  

4.3  Concentration distribution  

Fig. 8 envisages that nanoparticles concentration    and the associated layer thickness 

undermine due to increasing Schmidt number Sc . Higher Sc indicating lower molecular diffusivity 

contributes lesser nanoparticles concentration in the related boundary layer. At certain Sc (for 

instance, 5Sc  ),    is maximum in the flow zone contiguous to the solid boundary and then 

   gradually diminishes as we proceed towards the ambient fluid. 

4.4  Local skin friction, Nusselt number and Sherwood number  

 Fig. 9 reveals the surface drag force  0F  behavior or the skin friction characteristics in 

response to Deborah numbers 1 and 2 for different Hartmann number M . In this case 1 and 2

influence the wall shear stress in diagonally opposite manner. In this case, surface drag force slows 

down with increase in 1 while it escalates with rising 2 (opposite behavior is noticed). The skin 

friction is a decreasing function of 1 while it is an increasing function of 2 . Here we must note that 

these two Deborah numbers exhibit exactly opposite nature of fluid velocity.  This is well observed in 

Mustafa et al. [31]. Fig. 10 narrates how the Nusselt number varies in response to thermophoretic 

parameter tN and Brownian motion parameter bN against different values of Hartmann number M . A 

reduction in the absolute value of Nusselt number is accomplished due to elevating both tN and bN . 

This implicates that heat transfer rate gets diminution due to the influence of Brownian motion and 

thermophoresis mechanism. However, descending trend is more eye-catching due to the influence of 

Brownian motion.  In fact, rise in thermophoresis parameter tN improves the temperature profiles 

and the related layer thickness. As indicated in different literature, larger thermophoresis parameter 

indicates stronger thermophoretic force. Stronger thermophoretic force drags enormous 

nanoparticles through greater diffusion from the hot plate towards the ambient thereby 

increases the fluid temperature within the domain. An increase in bN corresponds to the 

effective random motion of fluid particles generating more heat within the flow. Therefore 

temperature increases. Fig. 11 delineates how the Sherwood number gets affected from the impact 

of tN and bN  against different M . As a first step, by increasing tN leads to a diminishing trend of 

mass transfer rate while that of bN yields a reverse trend.  This is because one can observe from 

diversified literature that increase in thermophoretic parameter tN witnesses an up gradation of 

nanoparticles concentration while augmented Brownian motion parameter bN  shows a reverse trend. 

This is due to the fact that rising of Nt indicating strong thermophoretic force leading to 

larger diffusion of nanoparticles from the hot plate to the ambient fluid and as a result 
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improves nanoparticles concentration profiles. On the other hand, the Brownian force due to 

Brownian motion makes the particles to move in opposite direction of the concentration gradient and 

makes the nanofluid more homogenous. Such force leads to low concentration gradient and more 

uniform nanoparticle concentration distribution. It is interesting to note that thermophoretic force 

strength due to 0.6tN  and Brownian force strength due to 0.7bN  contribute almost same mass 

transportation in the associated boundary layer. 

 

 

 
Fig. 2 Influence of Deborah number for relaxation time 1 on velocity  F   
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Fig. 3 Influence of Deborah number for retardation time 2 on velocity  F   

 
 

Fig. 4 Influence of Hartmann number M on  F   
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Fig. 5 Influence of Prandtl number Pr on temperature     

  

 
 

Fig. 6 Inflence  of modified Eckert number mEc on     



S. Mishra et al. 

International Journal of Thermofluid Science and Technology (2020), Volume 7, Issue 1, Paper No. 20070104 

13 
 

 
Fig.7 Influence of Hartmann number M on      

 

  
Fig. 8 Influence of Scmidt number Sc on     
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Fig. 9 Influence  of 1 and 2 on skin friction against M  

 

 
Fig. 10 Influence of tN and bN on Nusselt number against M  
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Fig. 11 Influence of tN and bN on Sherwood number against M  

 

 

Table1. Comparison of  0F  for different values of 𝛀𝟏 for 𝛀𝟐 = 𝝐 = 𝒁 = 𝜹 = 𝟎. 

 

𝛀𝟏 Abel et al. [33] Megahed [34] Waqas [35] Present Work 

0.0 1.000000 0.999978 1.000000 1.00000000 

0.2 1.051948 1.051945 1.051889 1.05188988 

0.4 1.101850 1.101848 1.101903 1.10185163 

0.6 1.150163 1.150160 1.150137 1.15016093 

0.8 1.196692 1.196690 1.196711 1.19669083 

1.2 1.285257 1.285253 1.285363 1.28525740 

1.6 1.368641 1.368641 1.368758 1.36878678 

2.0 1.447617 1.447616 1.447651 1.44761469 

 

5. Conclusion 

 There have been reports regarding the flow and heat transfer of Oldroyd-B nanofluid 

in view of relaxation-retardation viscous dissipation over a vertical stretched plate. This 

convenient research grows our insights into innumerable significant practical applications, 

for example production of plastic sheets and extrusion of polymer in polymer industry. 
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Enhancement of Deborah numbers 1 and 2 associated with relaxation time accounts for 

diminishing trend of fluid motion while that of 2 (Deborah number associated with 

retardation number) exhibit adverse behavior. More Hartmann number M indicating more 

Lorentz force yields diminutive fluid flow and escalates the fluid temperature. Deborah 

numbers 1 and 2  influence the wall shear stress in diagonally opposite manner for different 

Hartmann number M . Increasing thermophoretic force causes a diminution of mass transfer 

rate while a reverse situation is noticed for that of Brownian motion. Smaller thermophoretic 

force (small tN ) and less Brownian motion subject to considerably high Prandtl fluids lead to 

the enhancement of heat transfer rate from the vertical stretched plate. 

At last, it has been suggested that the present model can be adopted for entropy 

optimized three dimensional rotating flow problems, which will be a focus in our future work. 
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