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Abstract 
 
This article analyses the effects of heat transfer and thermal conductivity on the peristaltic 
transport of Jeffery fluid through an inclined elastic tube with porous walls. The velocity slip and 
convective boundary conditions are taken into account. The modeled governing equations are 
solved analytically by considering the long wavelength and small Reynolds number approximations. 
The closed-form solutions are obtained for velocity, flow rate, and the theoretical determination of 
flow rate is calculated with the help of equilibrium condition given by Rubinow and Keller. A 
parametric analysis has been presented to study the effects of Jeffery parameter, thermal 
conductivity, Darcy number, the angle of inclination, velocity slip, Biot number, amplitude ratio, 
Prandtl number, and Eckert number on velocity, flow rate, and temperature are scrutinized. The 
streamlines show that the bolus moves with the same speed as that of the wave and further the 
study reveals that an increase in the Biot number reduces the magnitude of the temperature.  
 
Keywords: Angle of inclination; Convective conditions; Jeffery parameter; Variable thermal conductivity; 
Velocity slip 

 

1. Introduction 

The investigation of heat transfer effects along with slip conditions on peristalsis has bought the 
attention of researchers in past decades due to their extensive application in sanitary fluid 
transport, heart-lung machines, laser therapy, hypothermia treatment, transport of corrosive fluids 
and coldness cryosurgery (Jaggy et al., 2000). The examination of heat transfer is concerned with 
temperature and the flow of heat. Where temperature decides the amount of thermal energy 
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available while heat flow indicates the movement of thermal energy from one place to another. In 
general, the heat transfer can happen in three unique classes: conduction, convection, and radiation. 
Among the three classifications, the convective method of heat transfer assumes an indispensable 
part in numerous applications. Mainly, it is utilized as a part of oxygenation and hemodialysis. 
Keeping this in mind, numerous scientists have explored the fluid characteristics by taking 
convective boundary conditions alongside variable thermal conductivity (Hayat et al., 2013; Alsaedi 
et al., 2013; Abbasi et al., 2015; Hayat et al., 2016; Sayed et al., 2016; Abdul, 2017; Srinivasa, 2017; 
Prasad et al., 2018(a)). The initial studies on the peristaltic transport of a Newtonian/non-
Newtonian fluid has been carried out by many researchers by taking different assumptions and 
configuration (Latham, 1966; Burns and Parkes, 1967; Raju and Devanathan, 1972; Vajravelu et 
al.,(2016)(a); Vajravelu et al., (2016)(b); Prasad et al., 2017; Manjunatha and Rajashekhar, 2018; 
Prasad et al., 2018(b); Vaidya et al., 2019 (a-d)). Among the several non-Newtonian models, the 
Jeffery model is more significant in describing the flow of blood in arteries. The studies on the use 
of the Jeffery model was carried out by Hayat et al. (2007) to investigate the peristaltic transport in 
a circular tube. Nadeem and Akram (2010) analyzed the peristaltic transport in a rectangular duct 
and obtained the exact solutions for pressure rise and pressure gradient. Further, several authors 
used the Jeffery model for investigating the peristaltic transport with different geometries and 
assumptions to represent the specific living situation (Vajravelu et al., 2011; Bhatti and Abbas, 2016; 
Selvi et al., 2017). 

The flow of biological fluids through porous media plays a vital role in understanding the various 
mechanism in gallbladder, lungs, blood vessel movement, etc. These applications of porous media in 
biofluid dynamics and biomechanics have attracted researchers in recent times. In the human body, 
a large part of the tissues, like, muscles, ligaments, and bones form a deformable porous media. In 
such conditions, the presence of slip on the boundary because of the permeability of the walls has a 
necessary effect in reviewing the biological fluids. Thus, slip effects are more verbalized for fluids 
going through geometries which have flexible property, like blood vessels. This slip flow of fluids is 
used in the polishing of the internal cavities and artificial heart valves. The exploratory 
examinations on non-Newtonian fluids revealed the centrality of slip at the walls. The peristaltic 
flow of blood through a tube can be idealized better by considering slip and permeability. Studies 
on the utilization of porous walls on peristaltic transport have been initially explored by 
Elshehawey et al. (1999). Later, various researchers examined the impact of slip velocity on the 
peristaltic mechanism by using different models under different assumptions and geometries 
(Nadeem and Akram, 2011; Tripathi and Beg, 2012; El-Koumy et al., 2012; Manjunatha et al., 
2019(a-c)). 

It is important to note that, the Poiseuille's law shows that for a fluid which is incompressible, the 
flux in the tube is a linear function of the pressure difference between the ends of the rigid tube 
through which it flows. Hence, the non-Newtonian fluids obey Poiseuille’s law in most of the 
theoretical as well as experimental studies. The nonlinearity in vascular beds of warm-blooded 
creatures is ascribed to the flexible idea of veins and their immense distensibility. This elastic 
property of veins was first perceived by Young (1968). Further, Rubinow and Keller (1972) showed 
that the scope of the tube could be controlled by the strain in the dividers and the transmural 
weight contrast by accepting that the Poiseuille law holds locally. Consequently, there is a necessity 
for the subjective speculation of blood flow through elastic tubes. The stream designs bought by the 
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models with a rigid tube can't clarify the flow of blood in narrow arteries completely. Henceforth, it 
becomes important to consider the elasticity in the present model.  

To the best of the authors' knowledge, no attempts have been made in the literature to investigate 
the role of variable thermal conductivity, convective boundary conditions and inclination on 
peristaltic transport of Jeffery fluid in an axisymmetric elastic tube with porous walls. The present 
investigation helps to fill the gap in this direction.  The resulting modeled equations are solved 
analytically under the proper slip boundary conditions. The influence of pertinent parameters on 
velocity, flow rate, temperature, and streamlines are presented graphically. The outcomes of the 
present model help in understanding the complex physiological behavior of blood in the 
circumstances mentioned above, which intern helps medical people to investigate the blood flow in 
arteries a much better way than the earlier and, helps in modeling the heart-lung and dialysis 
machines.  
 

2. Mathematical Formulation 
The flow is considered to be laminar, steady, incompressible, fully-developed, axisymmetric and 
exhibiting peristalsis in an elastic tube with porous walls (See Fig. 1). The fluid is characterized by 
the Jeffery model and facilitates the choice of the cylindrical coordinate system to study the 
problem. The wall deformation due to the propagation of an infinite sinusoidal wave train of 
peristaltic waves is represented by 

 
2

'( , ) sin .h z t a b z t




 
   

 
      (1)                                       

 
Fig. 1. Geometrical representation of Peristaltic waves in an elastic tube. 

Consider the constitutive equations on the peristaltic transport of incompressible viscous Jeffery 
fluid represented by the following expressions 

T pI S  , 
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11
S


  



  
  

  
.                    (2) 

Where T  is the Cauchy’s stress tensor, S is the extra tensor, I  is the identity tensor, 
1 is the ratio 

of relaxation to retardation time, 
2 is the retardation time and   is the shear rate and dots over 

the quantities indicate differentiation with respect to time. 

The flow becomes steady in the wave frame ( , , )r z  moving with velocity c  away from the fixed 

frame  , ,R Z  given by 

 
2

, - , - , , ( ),
2

R
r R z Z ct p Z t P z          (3)       

where p and P  are pressures,   and  are stream functions, in the wave and fixed frames of 

references, respectively.  
The pressure p  remains constant at any axial station of the tube under the assumption of long 

wavelength approximation. Using the following nondimensional variables 

2

0
1 2
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'
, , , , , , Pr , , ,

'

'

, , ,Re , , Pr.

prz
rz

p

cr z ct ph b u w
r z t p u w

ch c a k c c

h

T T cc a ca
Ec F N Ec

T c T ga


 

   



 

  

        
 
 
 


      

  (4) 

The non-dimensional equations of motion and energy in the wave frame of reference, moving with 
speed c , under the lubrication approach is as follows: 

1
Re ( ) ( ),rz zz

p
u w w r

r z z r r r
   

     
     

     
 (5)                                                                         

3 2Re ( ) ( ),rr rz

p
u w u r

r z r r r r


   

     
     

     
   (6)
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  
  
  

   (7)                                       

Where u  and w are the radial and axial velocities, Re  is the Reynolds number,   is temperature,  

  is wave number , Pr  is the Prandtl number, Ec  is the Eckert number,  r is radial coordinate, rr is 

shear stress in radial coordinates zr  is shear stress in axial and radial coordinates, zz  is shear 

stress in axial coordinate and rz  is the shear stress along radial and axial coordinates.  

Under the assumption of long wavelength and small Reynolds number, Eqs. (5) - (7) takes the form 

1

1 sin
( ) ,

p
r

r r z F




 
  

 
      (8) 



G. Manjunatha et al. 

International Journal of Thermofluid Science and Technology (2020), Volome 7, Issue 1, Paper No. 20070101 

 

5 
 

 

0 ,
p

r





        (9)                                        

1
( ) Pr .

w
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
 

     
    
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      (10)                                                       

The corresponding non-dimensional boundary conditions are (Saffman, 1971; Abbasi et al., 2015) 

, (1 ) 0 at
w w

h Bi r h
r rDa

 
 

  
    

 
,     (11) 

0, isfinite at 0rz r
r





 


.        (12)                                   

Where Da  is the porous parameter  (Darcy number),   is the velocity slip parameter,   is the 

thermal conductivity, ( ) 1 , 1k      , 

0

la
Bi

k
  is the Biot number and l  is the heat transfer 

coefficient of the wall and  is the temperature. 
The closed-form solutions are obtained for the velocity expression (8) and (9) satisfying the 
boundary conditions (11) and (12), we obtain the velocity as 

   2
1 2 2

1 2

4

P f h Da
w h r





  
   

 
.      (13)                                                     

Where 
1

sin
and

p
P f

z F


  


Using Eq. (10) together with the boundary conditions (11) and (12), 

we obtain an expression for temperature as  

   
2 4

1 3
1 1

64 4 4

N P f r h
h

Bi

 


    
    

  
.     (14)                                  

2.1 Theoretical Determination of flux: Application to Flow Through an Artery 
A theoretical calculation of the flux Q  is carried out for an incompressible Jeffery fluid through an 

elastic tube of radius ( , ) '( , ) ''( )h z t h z t h z  . The fluid is assumed to enter the tube with pressure 

1p  and leave the tube with pressure 2p , while the pressure outside the tube is 0p . If z  denotes the 

distance along the tube from the inlet end, then the pressure ( )p z   in the fluid at z  diminishes from 

1(0)p p   to 2( )p p  . The tube may contract or expand due to the difference in the pressure of the 

fluid 0( )p z p . Subsequently, the cross-section of the tube may have a deformation due to the 

elastic property of the walls. Thus, the difference in pressure influences the conductivity 1  of the 

tube at z . We consider the conductivity 1 1 0[ ( ) ]p z p     to be a known function of the pressure 

difference 0( ( ) )p z p . This conductivity is assumed to be the same as that of a uniform tube having 

an identical cross-section at z . The relation between Q  and the pressure gradient is given by 

1 0( )( ).Q p p P f          (15) 

Under the considerations of peristaltic motion and the elastic property of the tube wall, Eq. (15) can 
be written as,  
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F
p p h h             (16)                                                     

where 1

4
(1 ) 1

Da
F 



 
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 
 and ''h  is the change in radius of the tube due to elasticity and is a 

function of pressure 0p p  at each cross-section due to the Poiseuille flow. Equation (15) with the 

inlet condition 1(0)p p   gives 

1 0

0

1

4

1

( ) 0

( ') ' ( ' '') ,
8

p p

p z p

F
Q z p dp f h h dz





         (17)                           

where 0' ( )p p z p  . Equation (17) gives ( )p z  in terms of z  and Q  by setting 1z   and 2(1)p p  

we get Q  as,        

Now, using Eq. (17) in Eq. (18), we have 

1 0

2 0

1

4

1

0

(p') dp' ( ' '') dz.
8

p p

p p

F
Q f h h





           (18) 

1 0

2 0

4 4( ' '') dp' ( ' '') .
8

p p

p p

F
Q h h f h h





 
    

  
      (19)   

Equation (19) can be solved if we explicitly know the function 0''( )h p p  . If ''h  is known as a 

function of the tension ( '')T h  or stress, then ''( ')h p   can be determined from the equilibrium 

condition (Rubinow and Keller, 1972) given by 

0

( '')
.

''

T h
p p

h
         (20) 

Rubinow and Keller (1972) carried out experimental investigations by controlling the static 
pressure-volume connection of a 4-cm long piece of a human iliac artery and gave an expression for 
tension in an elastic tube as:                                      

5

1 2( '') ( '' 1) ( '' 1) .T h t h t h           (21) 

Using Eq. (21) with 1 13t   and 2 300t  , Eq. (20) takes the following form 

3 21
22 2

1
dp' 4 '' 15 '' 20 '' 10 dh''.

'' ''

t
t h h h

h h

  
       

  
   (22)                                

Using Eq. (22), Eq. (19) can be written as 


1 0

2 0

3 2 41
22 2

1
( ' ") 4 '' 15 '' 20 " 10 ' ( ' '')

8 '' "

p p

p p

tF
Q h h t h h h dh f h h

h h





  
           

 
 .             (23) 
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Letting 
1p p  and 

2p p  in Eq. (20) the solutions are obtained for ''

1h  and ''

2h respectively.  

Equation (23) can be rewritten as   

 
4" " "

1 2 2
( ) ( )

8

F
Q g g fh h h   

  
.                    (24)   Where,                                                   

 

     

   

3 4 8 7
2 3

1 2

2 5 6
4 3 3 2 2

3 4
4 3 2 4 3 2

'' ' '' ''
( ) 2 ' '' 6 ' '' 4 ' log log '' 16 ' 15

3 '' 2 7
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2 5 6
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3 4

'

h h h h
g h t h h h h h h t h

h

h h h
h h h h h h h h

h h
h h h h h h h

h

  
         

  

         

        

  
4

4 2 3 '
' 10 ' 6 ' 4 ' log log '' .

''

h
h h h h

h


    



(25) 

3. Results and Discussion 
The present paper emphasizes on the combined effects of slip and heat transfer on the peristaltic 
transport of Jeffery fluid in an inclined elastic tube with porous walls. Figs. 2-9 are plotted to 
observe the effects of Jeffery parameter 1( ) , the angle of inclination ( ) , porous parameter ( )Da , 

velocity slip parameter ( ) , amplitude ratio ( ) , elastic parameters 1 2( , )t t , inlet and outlet elastic 

radius " "

1 2( , )h h , Brinkmann number ( )Br , thermal conductivity ( )  and Biot number ( )Bi  on 

velocity ( )w , flow rate ( )Q , streamlines ( ) and temperature ( ) . MATLAB programming is used to 

plot these effects of physiological parameters. 
 
Velocity profiles are plotted in Fig. 2 for different values 1, , , andDa    . It is noticed that the 

velocity profiles are parabolic in nature with the maximum velocity at the center of the tube. From 
Figs. 2(a-d) it is observed that for a larger value of 1, , andDa   the magnitude of the velocity 

increases. Whereas, an increase in the value of  decreases the magnitude of the velocity. Figs. 3 

and 4 are plotted to examine the effects of " "

1 1 2 1 2, , , , , , , andDa t t h h     on flow rate. Fig. 3(a) 

depicts the variation of 1  on flow rate. It is observed from the figure that an increase in the values 

of 1  enhances the flow rate in an elastic tube. Fig. 3(b) shows the variation of Da on flow rate. It is 

noticed that an increase in the values of Da  increases the volume of flow rate. 
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Fig. 2 w  v/s r  with varying (a) Jeffery parameter 1( ) , (b) porous parameter ( )Da , (c) 

amplitude ratio ( ) , (d) angle of inclination ( ) and (e) velocity slip parameter ( ) . 
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Fig. 3 Q  v/s z  with varying (a) Jeffery parameter 1( ) , (b) porous parameter ( )Da , (c) 

velocity slip parameter ( ) , (d) angle of inclination ( )  and  (e) amplitude ratio ( ) . 
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Fig. 4 Q  v/s z  with varying (a) elastic parameter 1( )t , (b) elastic parameter 2( )t , (c) inlet 

elastic radius ''

1( )h  and (d) outlet elastic radius ''

2( )h . 

The influence of   on flow rate shows the opposite behavior as that of Da  (See Fig. 3(c)).  Figure 

3(d) portrays the variation of   on flux. It is observed that the impact of increase in the angle   

increases the volume of flow rate. The variation of   on flow rate is illustrated in Fig. 3(e). It is 
clear from the figure that an increase in the value of   increases the volume of flow rate. Since   is 
the amplitude ratio, an increase in the value of   results in an increase in the wave height which in 

turn increases the flux.Figs. 4(a and b) are drawn to study the effects of 
1 2andt t on Q  respectively. 

We see from these figures that an increase in the values of 
1 2andt t  enhances the flow rate. Further, 

the variation of inlet and outlet elastic radius " "

1 2h and h  on Q  are plotted in Figs. 4(cand d). For a 

fixed value of "

2h , the effect of increasing values of "

1h  makes flow rate to decrease (See Fig. 4(c)). 

However, Fig.4(d) exhibits the opposite behavior when we fix "

1h  and vary "

2h . 
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Fig. 5  v/s r  with varying(a) Jeffery parameter 1( ) , (b) varyingamplitude ratio ( ) , (c) 

porous parameter ( )Da , (d) thermal conductivity ( ) , (e) Biot number ( )Bi  and (f) 

Brinkmann number ( )Br . 
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Figure 6. Streamlines for varying (a) 1 0  , (b) 1 0.2  , (c) 1 0.4   and (d) 1 0.6  . 

 
Figure 7. Streamlines for varying (a) 0.01Da  , (b) 0.02Da  , (c) 0.03Da   and (d) 0.04Da  . 



G. Manjunatha et al. 

International Journal of Thermofluid Science and Technology (2020), Volome 7, Issue 1, Paper No. 20070101 

 

13 
 

 

 
Figure 8. Streamlines for varying (a) 0.3  , (b) 0.4  , (c) 0.5   and (d) 0.6  . 

 
Figure 9. Streamlines for varying (a) 0.1  , (b) 0.2  , (c) 0.3   and (d) 0.4  . 

 
The effects of 1, , , , andDa Bi Br   on temperature are plotted in Fig. 5. The temperature profiles 

are non-parabolic and show the dual nature. The role of 1  on temperature is shown in Fig. 5(a). 

The temperature decreases with increasing values of 1 . Finally, the behavior of   on temperature 
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shows the opposite trend as that of 1  (Fig. 5(b)). The role of Da  on temperature is examined in Fig. 

5(c). It is observed that the increasing values of Da  decrease the temperature near the axis of the 
tube and opposite behavior is observed near the walls. The effect of   plays a vital role in the 

determination of temperature. It means that a larger value of   increases temperature near the 

axis of the tube and the effect is negligible near the walls (See Fig. 5(d)). This is because of an 
increase in the value of   allows the fluid to dissipate or absorb heat to its surroundings. Hence, an 

increase in   decreases the temperature near the walls of the tube. Fig. 5(e) depicts the variation of 

temperature due to the influence of Bi . An increase in the value of Bi  results in the reduction of 
temperature. Fig. 5(f) illustrates the effect of  Br  on temperature. It is found that an increase in the 
value of  Br  increases temperature. Since Ec  occurs due to the viscous dissipation effects and it 
enhances temperature. Further, an increase in the value of Pr decrease thermal conductivity and 
thereby increases temperature.  
 
The essential part of peristalsis is trapping. It is by and large the arrangement of the inside flowing 
bolus. These trapped boluses push ahead alongside the sinusoidal movement of the peristaltic wave. 
This phenomenon is particularly useful in bloodstream issues, for example, the arrangement of 
thrombus and transport of food bolus in the gastrointestinal tract. Figs. 6-8 shows that the size of 
trapped bolus decreases as we increase the value of 

1, andDa   and hence it increases the number 

of bolus formations. Whereas it increases with an increase in the value of   and thereby, it 

vanishes the trapped bolus for larger values of   which is observed in Fig. 9. From these figures, 

one can observe that the bolus moves at the same speed as that of the wave. 
 

4. Conclusion 
It is worth noticing that, from the current model, one can deduce the results of a Newtonian model 
by taking 

1 0  . The present study provides a satisfactory outcome that represents some of the 

natural phenomena, especially the flow of blood in narrow arteries, which can be handled and 
processed in case of dysfunction. The conclusions can be summarized as follows: 

 The axial velocity increases with an expansion in the estimation of the porous parameter, 
and it diminishes for a larger value of velocity slip parameter. 

 The flow rate in an incline elastic tube increases with an expansion in the porous parameter, 
and it diminishes with an increment in the slip parameter. 

 The influence of the Jeffery parameter and angle of inclination enhances the flow rate. 
 The effects of elastic parameters, outlet elastic radius and amplitude ratio increases the flow 

rate while the inlet elastic parameter decreases the flow rate. 
 The magnitude of temperature diminishes with an expansion in the Biot number and the 

temperature depended thermal conductivity increases the temperature close to the axis and 
the impact is irrelevant close to the walls. 

 The volume of tapered bolus diminishes with expanding porous parameter, and it 
increments for larger values of the velocity slip parameter. 
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