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Abstract 

The present study focuses on the impact of non-uniform heat source/sink and temperature 

dependent viscosity modeled by Reynolds on Cattaneo-Christov heat flow of third grade 

nanofluid subject to an inclined stretched Riga plate. Fourth order R-K and shooting methods 

have been implemented to obtain the numerical solution of the transformed boundary layer 

equations. The achievability of the present study is that the material constants associated with 

third grade fluid augment the fluid motion and boils down the fluid temperature leading to 

ascending velocity boundary layer and descending thermal boundary layer. And viscosity 

parameter enhances the heat transfer rate from the plate. Furthermore, augmented space and 

temperature dependent heat source upsurges the fluid temperature and the related thermal 

boundary layer thickness. 

Keywords: Non-uniform heat source/sink; Reynolds variable viscosity model; Cattaneo-

Christov heat flux model; Third-grade nanofluid; Inclined stretched Riga plate. 

1. Introduction 

It was the time when the World was looking forward to greater research contributions from 

across the Globe; Choi et al. [1] played an important role in discovering experimentally the 

concept of nanofluids. Nanofluids are the novel type fluids that contain nanoparticles, such as 

metals, oxides, carbides, and nitrides, with sizes less than 100 nm have higher thermal 

conductivity compared to that of the conventional base fluid, such as water, engine oil, and 
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ethylene. Such extraordinary characteristics of nanofluids (fluids with more heat transfer 

capability) make them potentially useful to serve as better coolant in nuclear reactor, micro 

manufacturing, refrigeration, automotives, heat exchangers, aircrafts and space applications and 

other high energy devices, antibacterial treatment, wound treatment, asthma treatment, targeted 

drug release/drug delivery [2-22]. 

Nomenclature 

( , )u v  velocity components in (x, y) directions  w  wall shear stress 

CCHF Catteneo-Christov heat flow   TGNF  Thirdgrade nanofluid 

TBL thermal boundary layer   CBL concentration boundary layer 

HTR heat transfer rate      relaxation time 

( * *

1 2,  , *

3 )  material constants
    f  kinematic viscosity  

 ,T C
 
fluid( temperature, concentration)   

fk     thermal conductivity 

 ,T C   ambient ( temperature, concentration) 
f    density of fluid 

 f    dimensionless stream function   0j   current density 

 ,T C  (thermal, solutal) buoyancy parameters   wU x stretching velocity of the plate 

p    width of magnets and electrodes     Deborah number expansion 

 ( T , C ) volumetric coefficient of (thermal, mass)            

 g  gravitational acceleration      width parameter
 

0M    magnetization of permanent magnets  q   heat flux 

0Q  coefficient of space dependent heat source/sink 

 
f

f

p f

k

C



  thermal diffusivity 

1Q  coefficient of temperature dependent heat source/sink 

   p pp f
C C    heat capacity ratio  V   velocity 

( 1 2,  , 3 ) non-dimensional material constants    velocity ratio parameter 

Nb   Brownian motion parameter   Nt   thermophoresis parameter, 

Rex  
local Reynolds numbers     angle with vertical direction 

BD    Brownian diffusion coefficient   TD   thermophoretic diffusion coefficient 

pC   specific heat at constant pressure   wU x ax  stretching velocity 

  non-dimensional vertical distance  m  Reynolds model viscosity parameter 

rP  Prandtl number    0   reference viscosity 

Le  Lewis number       modified Hartmann number 

wq  wall heat flux     mJ  wall mass flux  

Subscripts       

f  fluid      s   surface  



M K Nayak et al. 

International Journal of Thermofluid Science and Technology (2019), Vol. 6, No. 4, Paper No. 19060401 

3 
 

w  quantities at wall      quantities at  free stream 

 

Looking at the Riga-plate arrangement it produces a Lorentz force of exponentially decaying 

nature which induces the flow over the plate.  Pantokratoras and Magyari [23] were the pioneers 

to study electro-magnetohydrodynamic flow over a horizontal Riga plate. Later, Ahmad et al. 

[24] studied the flow of nanofluid past a Riga plate considering the influence of nanoparticles 

size on skin friction. Hakeem et al. [25] investigated the impact of exponentially variable 

viscosity and permeability on Blasius flow of Carreu nanofluid over an electromagnetic plate. 

In fact, third grade fluid imparts features such as normal stresses and shear thinning/shear 

thickening phenomena. Examples of such fluids are molten plastics, slurry flows, highly viscous 

silicon oils and dilute polymer solutions and many more.  Hayat et al. [26] explored in their 

investigation that velocity field disparages with enhancing of melting parameter and reducing 

wall thickness parameter. The deviations of flow variables for third-grade fluid are significant 

compared to the Newtonian fluid flow (Ready et al. [27]).  

The interesting aspect of CCHF model is that thermal relaxation was added to Fourier’s 

law by Cattaneo [28]. The Cattaneo’s model was further improved by Christov [29] after which 

this model is known as CCHF model. Augmentation in thermal relaxation time contributes to 

low temperature (Imtiaz et al. [30]). Hayat and Nadeem [31] declared in their study that the heat 

source/sink that exerts strong influence on HTR associated with the TBL. Heat source/sink alters 

the HTR and thereby changes the structure of TBL.  The fluid temperature and wall shear stress 

increase due to increase in heat source/sink parameter in stagnation point flow past stretching 

sheet (Sharma et al. [32]).  

In brief, the present study is clearly meant for exploring the effects of non-uniform heat 

source/sink and temperature dependent variable viscosity on the flow of third grade nanofluid 

flow over an inclined Riga plate. Further, CCHF model is invoked to obtain the behavior of 

relaxation time. An appropriate numerical solution of the developed similarity transferred 

coupled non-linear differential equations has been devised by using fourth order R-K method 

through shooting technique. The influence of various significant emerging parameters concerned 

presented through appropriate graphs and discussion.  

 

2. Formulation of the problem 

In the current study, we consider the steady incompressible flow of third grade nanofluid over an 

inclined stretched Riga-plate. A Cartesian coordinate system is chosen such that x-axis is along 

the plate and y-axis is normal to it (Fig.1). The plate is stretched by equal and opposite forces 

with velocity  wU x ax . Electromagnetic field of the Riga-plate induces an exponentially 

descending Lorentz force parallel to the plate surface.  

The equations of continuity, momentum and energy governing the flow of third grade 

nanofluid in the presence of non-uniform heat source/sink are [8, 14, 26, 31]: 
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Fig. 1. Flow configuration and coordinate system.   
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According to CCHF theory, we reveal [13]: 

 . . . f

q
q V q q V V q k T

t


 
           

      (5)   

where  is the relaxation time of heat flux/thermal relaxation of the fluid,V  is the velocity 

vector and q  is the heat flux. It is the time taken for the shear stress in a viscoelastic material to 

reduce 1 e of its initial value. 

Setting 0  in eq (5), classical Fourier’s law can be obtained. Considering the flow as steady 

0
q

t

 
 

 
and incompressible  . 0V  , eq (5) takes the form 

 . .q V q q V k T                (6) 

The energy equation then becomes   
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According to Grinberg [33], the force density averaged over the span wise coordinate z takes the 

form 

0 0
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 is the Grinberg term of the momentum equation (2) which 

does not depend upon the flow velocity. 

The requisite boundary conditions are : 

 

 

, 0, , 0

, ,

w w wu U x ax v T T C C at y

u U x T T C C as y  

      


    

      (8) 

The non-uniform heat sourc/sink is expressed as 
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Where 0Q  and 1Q  are the coefficients of space and temperature dependent heat source/sink 

respectively. The case 0 0Q  and 1 0Q  contributing internal heat generation while 0 0Q  and 

1 0Q  contribute internal heat absorption. 

The suitable transformations employed for the purpose are :   
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Where wU U U  is the composite velocity. The incompressibility condition is satisfied. 

According to Reynolds model, the expression for temperature dependent viscosity is 

  0

m

f e                               (11) 

which can be expressed as 

     2

0 1f m o m      
 

            (12) 

With the help of eqs (9), (10) and (12) and neglecting higher order terms in eq. (12) and using 

the resulting expression, eqs (2), (4), (7) and (8) take the form: 
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with 

       0 1 0 0 0 1 0 1 0

1 0 0

f , f , , at

f ' , , as
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where 
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The local skin friction coefficient  
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The non-dimensional local skin friction coefficient 
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with  
0

m B

y

C
J D
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 denotes the wall mass flux. 

The non-dimensional local Sherwood number   

   
1

2 0xRe Sh '


           (21) 

3. Numerical Methodology 

The system of equations (13) – (15) together with the equation (16) are solved by using 

4th order RK method along with shooting technique. A relevant short logic diagram depicting the 

algorithm of the solution is mentioned below. 
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4.   Results and Discussion 

The present study primarily focuses on the effect of non-uniform heat source/sink and 

variable viscosity on mixed convection CCHF of TGNF over an inclined stretched Riga plate. 

An appropriate numerical solution of the transformed governing equations is obtained. The 

values of the parameters considered for the present simulation are: 1 2 3 0.1,     

0.3,c T   0.1  , 45 ,   0.5,m   0.2,    0.1,   0.6   Pr 1,  0.5b tN N  ,

0 1 0.1Q Q  and 0.5Le  . The present analysis imparts well exploration regarding the effects of 

different pertinent parameters on velocity, temperature, concentration, skin friction and 

Sherwood number profiles through suitable graphical representation and pretty discussion. 

 Figs. 2 and 3 bring to the focus the behavior of T and C on fluid velocity. It is noticed 

that an accelerated fluid motion takes place due to enhancement in T and C which in turn 

establishes thicker MBLs in the respective flow domains. Fig.4 reveals that an augmented m  

contributes to the accelerated fluid motion giving rise to the same environment that due to the 

presence of thermal and solutal buoyancies. The fundamental reason behind this ascending trend 

is that viscous force dominates over the inertial force. Increasing values of  yields the rising 

flow contributing to high wall velocity gradient (Fig.5). For the more and more the angle of 

inclination of the plate, VBL thickness gets reduced (Fig.6). As  rises, the flow diverges from 

the plate towards the ambient fluid with gradually more descending trend (Fig.7).  Figs. 8, 9 and 

10 portray the influence of 1 2,  and 3  on velocity profiles respectively. Fluid velocity gets 

diminution near the plate within the range  0 0.5  and it shows a reverse trend followed by 

a transition at 1.5   under the impact of increasing 1 . Indeed, material parameters are inverse 

relation to viscosity. That is why increase in 2 and 3  belittles the fluid viscosity thereby 

favors the fluid motion.  

It is obvious from Figs. 11, 12 and 13 that increase in 1 and 2 undermine the fluid 

temperature    while that of 3 upsurges it. A unique feature of these    profiles is the 

appearance of non-linearity which is due to the presence of non-linear terms in governing energy 

equation. Fig.14 demonstrates the non-linear decaying nature of the    profiles due to increase 

in m leading to shrinking of TBL in the entire flow regime. A non-linear    profile due to 

distinguished behavior of Pr is visualized in Fig. 15.  It is noticed here that increasing Pr makes 

the    less (due to low thermal diffusivity compared to viscosity) which in turn reduces TBL 

thickness. However, high Prandtl fluid  Pr 6 exhibits slow response to such diminishing trend. 

Further, symmetrical diminishing trend of non-linear    profiles due to increase in  is 

envisioned in Fig.16. This is because of low temperature profile under the influence of CCHF 
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model. Figs. 17 and 18 offer the non-linear, however, increasing behavior of non-dimensional 

   due to enhancement in bN and tN respectively. The rationally behind this is that higher 

Brownian diffusion and thermophoresis force contribute to stronger fluid temperature. Behavior 

of non-dimensional    due to the influence of non-uniform heat source/sink  0 1Q and Q is 

reflected from Figs. 19 and 20 respectively. In other words, increase in 0Q and 
1Q upsurge the 

   in non-linear fashion throughout the growing TBL associated with enhanced wall 

temperature gradient. 

 Figs. 21, 22 and 23 illustrate that hiked 1 and 2 upsurge the fluid concentration   

while that of 
3 undermine it.  Further, Fig. 24 indicates an increasing non-linear behavior of 

   due to rise in m generating ascending CBL. Fig. 25 displays that increase in Le  belittles 

the    developing descending CBL. This is only due to lower mass diffusivity. Fluid 

concentration    profiles enhance in response to rise in bN and tN , however, enhancement is 

more in case of tN  (Fig. 26 and 27). This is due to the effective motion of nanoparticles from the 

plate to the fluid.  

 Variation of skin friction coefficient 

1

2

Re fC against m for different 1 , 2 and 3  is 

shown in Fig.28. It is conveyed from this figure that

1

2

Re fC gets augmented due to increase in 

1  and 2 while the wall shear stress shows diminution due to enhancement in 3 . Meanwhile, 

Fig. 29 provides the variation of the wall shear stress against m for different  and . What is 

found here is that increase in  enhances the wall shear stress. As far as the behavior of 

Sherwood number 

1

2

Re xSh


is concerned, influence of 1 and 2  on it are diametrically 

opposite (Fig.30).  

 Augmented 1 enhances the mass transfer rate from the plate while that of 2 significantly 

reduces the same. Ascending trend of mass flux is prominent for comparatively higher 1

 1 0.3  .  
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Fig.2   f Vs

T   

 
Fig.3   f Vs

c   
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Fig. 4   f Vs m  

 
Fig. 5  f Vs    
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Fig. 6    f Vs   

 

 
Fig. 7    f Vs ε  
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Fig. 8  f Vs Ω1  

 
Fig. 9   f Vs

2   
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Fig.10  f Vs Ω3  

 
Fig.11.  Vs   Ω1  
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Fig.12  Vs   2Q   

 
Fig.13  Vs   3Q  



M K Nayak et al. 

International Journal of Thermofluid Science and Technology (2019), Vol. 6, No. 4, Paper No. 19060401 

17 
 

 
Fig.14  Vs   m   

 

 
Fig.15  Vs   Pr   

 



M K Nayak et al. 

International Journal of Thermofluid Science and Technology (2019), Vol. 6, No. 4, Paper No. 19060401 

18 
 

 
Fig.16  Vs     
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Fig.17  Vs  Nb   

 
Fig.18  Vs 

tN   
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Fig.19  Vs 
0Q   

 

 
Fig.20  Vs 

1Q   
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Fig.21  Vs 

1Q  

 
Fig.22  Vs 

2   
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Fig.23  Vs 

3   

 

 
Fig.24   Vs  m   
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Fig.25  Vs  Le   
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Fig.26  Vs 
bN   

 
Fig.27  Vs   tN   

 

 

Fig.28. Effects of Ω1, Ω2 and Ω3 on 

1

2

Re fC against m  
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Fig.29. Effect of  and  on 

1

2

Re fC against m   
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Fig.30. Effects of 
1 and 

2 on the Sherwood number against Le  

 

 

 

5. Outcomes at a glance 

The present study deals with the influence of non-uniform heat source/sink and temperature 

dependent viscosity on Cattaneo-Christov heat flow of third grade nanofluid past an inclined 

stretched Riga plate. The present investigation comes out with some important outcomes. 

 In the current analysis, accelerated fluid motion and thicker momentum boundary layers 

are due to increment in T , C , m ,  . It has identified that increase in 1  ascends the fluid 

motion while that of 2 and 3 exhibits reverse effect. It acknowledges that augmented 1 and

2 accounts for shrinkage of thermal boundary layer while that of 3 establishes ascending 

thermal boundary layer. There are reports that enhanced bN and tN upsurges the fluid 

temperature while hike in Le belittles the fluid concentration leading to a descending 

concentration boundary layer. Further, increment in 0Q and 1Q contributes to increment in wall 

temperature gradient and yields an augmented wall shear stress. Finally, rise in 1 2,  and m has 

caused to upsurge the concentration while that of 3  boils down it. 
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