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Abstract 
 

The study of two-dimensional flow and heat transfer in a liquid film of MHD Upper Convective 

Maxwell (UCM) fluid over an unsteady elastic stretching sheet subject to velocity slip and 

convective boundary condition is presented. Thermocapillarity effects are considered. Using 

suitable similarity transformations, the momentum and thermal energy equations are converted to 

a set of coupled nonlinear ordinary differential equations. These equations are solved 

numerically using the Keller-Box method. The velocity and the temperature distributions are 

presented graphically for different values of the pertinent parameters. The effects of the unsteady 

parameter on the skin friction, the wall temperature gradient, and the film thickness are tabulated 

and analyzed. The thermocapillarity parameter has a decreasing effect on the temperature field 

and the local skin-friction coefficient. 

 

Keywords: Thermocapillarity; Thin film; Velocity slip; UCM Fluid; Marngoni number; Keller 

box method 
 

1. Introduction 
In recent years, the investigation of thin-film flows and its rheological properties have pulled 

in consideration of various scientists as a result of its broad applications in science and 

Technological ventures. A portion of the applications is; wire coating, fiber coating, reactor 

fluidization, drawing, and annealing. The learning of flow and heat transfer inside thin-film 

flows is essential in understanding a few procedures, for example, the coating process, chemical 

process, polymer process, foodstuff process, and metallurgical processes. The dynamics of films 

on heated substrates are by and large represented by the main constraints, which form the basis 

for the formulation of thin films. They are a gravitational force, surface tension, 
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thermocapillarity (temperature dependence of the surface tension), phase change, as well as the 

intermolecular forces(See Davis (1987)). The collaboration of these powers regularly results in 

complex nonlinear conduct shown by the films. Because of the diminishing of the film, as it 

stretches with the boundary, the nature of the model will be unsteady. Considering these 

applications, Wang (1990) was the first among the others to ponder Newtonian liquid in a thin 

liquid film determined by an unsteady stretching surface and obtained similarity solution which 

satisfied Navier–Stokes equations. Several researchers (Andersson,2000; Dandapat,2003; 
Wang,2006; Liu, 2008) continued the work of Wang (1990)by taking heat transfer characteristics 

into account. Dandapat et al. (2007) accomplished a numerical solution for the five-parameter 

problem and examined the effects of thermocapillarity on the thin film flow in the presence of 

variable fluid properties. Further, Noor et al. (2010) utilized an analytical technique HAM to 

analyze MHD flow and heat transfer in a thin liquid film over an unsteady stretching sheet, and 

Aziz et al. (2011) analyzed the mathematical model of Dandapat B.S,(2007)with inner heating.  

All these investigators, however, confined their examinations to the thin liquid film flow of 

Newtonian fluids. However, many industrial fluids are non-Newtonian in nature or rheological in 

their flow characteristics and these fluids exhibit dynamic deviation from Newtonian behavior 

depending upon the flow configuration and/or the rate of deformation. This is maybe because of 

their extensive variety of utilization, for example, liquid plastics, polymers, suspension, foods, 

slurries, paints, glues, printing inks, blood, exotic lubricants. Chen (2003), Wang and Pop (2006) 
and Prasad et al. (2013) studied power-law fluid film over an unsteady stretching sheet. Further, 

Asghar et al. (2007) considered two thin-film flows of a Sisko fluid on a moving belt. Hayat et al. 

(2008), Makinde et al. (2009) and Kumaran et al. (2012)analyzed thin film flow of third-grade 

fluid with different geometry. Kumaran et al. (2012) presented an exact solution for the thin film 

flow of a third-grade fluid on an inclined plane, which was the corrected version of the earlier 

published solution. Further, Vajravelu et al. (2012) explored the effects of temperature-

dependent thermal conductivity on an unsteady flow and heat transfer in a thin liquid film of 

Ostwald–de Waele fluid over a horizontal permeable stretching surface. 

There are few non-Newtonian models which are known to be precise only for weakly elastic 

fluids subject to gradually varying flows and to violate certain rules of thermodynamics, namely, 

viscoelastic and Walters’ models. Concerning the polymer industry, the outcomes detailed in the 

above works are constrained. In this manner, the outcomes which are vital for industry, broader 

viscoelastic liquid models, for example, upper convicted Maxwell model (UCM fluid) or 

Oldroyd B model should be invoked. Numerous researchers have done extensive work on Upper 

Convective Maxwell fluid with different geometry with the boundary conditions prescribed at 

the sheet and on the fluid at infinity.  (See Hayat et al. (2006), Vajravelu et al. (2011), Sabeel et 

al. (2017), Saleem et al. (2017), and Nadeem et al. (2017)). To the authors’ best knowledge, the 

combined study of the flow and heat transfer in a thin liquid film of an electrically conducting 

UCM fluid combined with velocity slip and convective boundary condition on a horizontal 

elastic sheet has not been carried out.  In the present paper, we investigate the effect of the 

transverse magnetic field on thermocapillary driven thin film flow and heat transfer of an 

incompressible non-Newtonian UCM fluid induced by an accelerating unsteady elastic sheet 

with convective boundary condition. The presence of thermocapillarity couples the 

hydrodynamic and the thermal boundary layer problems. In addition to this, many non–

Newtonian complex fluids find wall slip such as emulsions, suspensions, foams, and polymer 
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solutions; therefore, in a thin film flow of non-Newtonian UCM fluid, the effect of velocity slip 

is prominent. Consequently, we examine considering the impacts of velocity slip on the thin film 

flow of UCM fluid(See Prasad et al. (2018), Vaidya et al. (2018)). 
The governing nonlinear coupled system of equations for flow and heat transfer have been 

reduced to a nonlinear coupled ordinary differential equation by using a suitable similarity 

transformation and is solved via an efficient second-order finite difference scheme known as the 

Keller-box method(Keller,1992; Vajravelu,2014; Prasad,2015,2016). The obtained numerical 

results are analyzed graphically. The analysis reveals that the thin film flow of UCM fluid is 

appreciably influenced by the physical parameters. It is expected that the results obtained will 

not only provide useful information for industrial applications but also complement the existing 

literature. 
 

2. MathematicalModeling of the Problem 
Consider an unsteady, laminar, viscous flow and heat transfer in an electrically conducting 

UCM thin liquid film with convective boundary condition on a horizontal sheet which issues 

from a slot (See Fig.1). The fluid motion along the x-axis within the thin liquid film arises due to 

the stretching of an elastic sheet, whereas the y-axis perpendicular to it. Intermolecular forces 

come into effect because the fluid layer considered is not so thin, and hence, the buoyancy force 

is neglected. The flow region is exposed under a uniform transverse magnetic field 

 0 00, ,0B B  with low magnetic Reynolds number and the imposition of such magnetic field 

stabilizes the boundary layer flow.  

 

Fig. 1: Schematic representation of the physical model and coordinate system. 
 

The Navier-Stokes equations with prescribed nonlinear boundary conditions will be solved 

numerically under the following assumptions 
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surface temperature be 
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constants with dimension -1(time)  and  
1

1bx t


 . Here, 
0T  is the temperature at the 

origin and 
refT  is the reference temperature such that 

00 refT T   , the above 

expressions are valid for time 1t   . 

 The fluid motion within the thin film of uniform thickness ( )h t  is caused solely by the 

linear stretching of an elastic sheet. 

 The surface-tension  considered to vary linearly with temperature as 

  0 1 01 T T      here T is the temperature, 0  is surface tension at the slit 

temperature T0 and   
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1
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
    is the positive temperature coefficient of 

the surface tension (Dandpat et al. (2007)).  

 Negligible interfacial shear due to air is assumed; however, the variation of   along 

the surface is  
T

x T x

   
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and the interfacial flow generated due to this is the major 

concern in this study. In spite of this, a balance between the viscous shear stress

,u y      and the thermal stress prevails which is of the form .
u

y x
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Under these assumptions, the governing equations along with the boundary layer 

approximations with an unsteady state can be written as 

v
0,

u

x y

 
 

 
                  (1) 

2

1 0
1

1
v v ,

xyxx Bu u u u
u u

t x y x y y

 


 

      
        

       
            (2) 

v v v 1
v ,

yyxxu
t x y x y





   
    

     
                (3) 

2 2

0 2 2
v ,

T T T T T
u

t x y x y


     
    

     
                (4) 

where u and v are the velocity components along with the x and y directions respectively,   is 

the density, 
xy  is the shear stress, 1  is the electrical conductivity,  

12 2

0 0( ) 1B t B t


   is the 

special form of the uniform magnetic field(see Prasad et al. (2013)) and 0  is the thermal 

diffusivity. In the present model, we consider  0u y    throughout the entire boundary layer 

and the fluid obeys the upper convected Maxwell model. For a Maxwell fluid, we have  
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where 
ij is the extra tensor, 

ijd  is the deformation rate tensor,  is the coefficient of viscosity 

and 1  is the relaxation time of the period and 
ijL  is the velocity gradient tensor. For an 

incompressible fluid obeying upper convected Maxwell model, the momentum equation and the 

energy equation can be simplified using the usual boundary layer theory approximations (Wang 

(1990), Andersson et al. (2000), Sadeghy et al. (2006))as  
22 2 2 2

2 2 1 0
1 12 2 2

v v 2 v v ,
Bu u u u u u u u

u u u u
t x y x y x y y y


  



          
          

          
         (6) 

2

0 2
v

T T T T
u

t x y y


   
  

   
                   (7) 

The boundary conditions for a thin fluid film with velocity partial slip are 

    , v v , at 0,s s s s s s

u T
u U N t k h t T T y

y y


 
      

 
            (8) 

     at ,
u

y h t
y x



 

 
 

                   (9) 

 0         at ,
T

y h t
y


 


              (10) 

 v  at ,
dh

y h t
dt

                (11) 

Here N the velocity slip factor, sk is the thermal conductivity of the fluid, sh  is the convective 
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satisfies mass conservation Eq. (1). In terms of these new non-dimensional variables, the 

equations (6) and (7) together with the boundary conditions (8) to (11) become 
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slip factor  
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1 2
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the similarity solution. The parameters S are the dimensionless measure of the unsteadiness, Pr

is the Prandtl number,   is the Maxwell parameter, M  is the thermocapillarity parameter 

(surface tension gradient)emerged during the course of similarity analysis which is the replica of 

Marangoni number, frequently observed in the analysis of thermocapillary driven flows , 0k  is 

the slip parameter, Mn is the magnetic parameter,  and iB  is the Biot number which are defined 
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  is the local Reynolds number. It is clear from equations (21) and(22)that 

fxC  decreases linearly with the distance from the slit, whereas xNu  increases as 3x  . 

 

3.Numerical procedure 
The equations (15) and (16) are highly coupled nonlinear fifth-order ordinary differential 

equations with the third order in  f   and second order in    . These equations subject to the 

boundary conditions (17) and (18) constitute a two-point boundary value problem on the interval 

[0, ]. The set of equations with the appropriate boundary conditions are solved numerically via 

an efficient numerical method with a second-order finite difference scheme known as the Keller-

box method (see for details Keller(1992), Vajravelu and Prasad(2014, 2015, 2016)). In order to 

validate the obtained results; we compare numerical results with the available results in the 

literature reported by Wang (2006), Noor et al. (2010), Aziz et al. (2011) and Vajravelu et al. 

(2012) which is shown in Table 1, and are found to be in excellent agreement.  

 

4. Results and Discussion 
Exact analytical solutions for the complete set of equations (15) and (16) which is highly 

coupled and nonlinear ordinary differential equations is not possible. Employing the numerical 

scheme, the system of equations is solved for several sets of values of the unsteady parameter S , 

the Maxwell parameter   , the thermocapillarity parameter M , the slip parameter 0k , the 

magnetic parameter Mn, the Prandtl number Pr and the Biot number iB .  Graphically presented 

numerical results in Figs. 2–7 give a clear insight into the physical model; the variations in 

horizontal velocity profile  f  , transverse velocity profile  f  , the temperature profile ( ) 

for different values of the physical parameters are reported in these figures. The solution of 

thermocapillary driven thin film flow exists only for 0 2S   and S = 2 is the critical value for 

a Newtonian fluid (See for details Wang (2006)). When 0( )S   we obtain the analytical 

solution for an infinitely thick fluid layer; whereas the limiting case of 2( 0)S    represents 

a liquid film of infinitesimal thickness. However, it is difficult to perform these calculations for 

the limiting case of   . The computed numerical values for the skin friction  0 ,f   the 

Nusselt number  0 and dimensionless film thickness  are recorded in Table 2. 

Figures.2(a) through 2(c) depict the effects of S on    ,  and ( )f f    for 

0 00 and 0.k k   It is clear from these profiles that   f   increase while  f   decreases 

monotonically as the distance increase from the slit. The increase in 0 and S k  leads to a rise in 

all the three profiles    ,  and ( )f f    , that is, the rise in the friction and the flow velocity 

is registered due to a rise in S on the surface. When friction increases, the area of the stretching 
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surface in contact with the flow increases, therefore generated heat from the friction on the 

surface is transferred to the flow and thereby enhances the velocity and thermal boundary layer 

thickness. A similar phenomenon may be observed in the case of    and ( )f     (See table 2 

for details). The effect of S on    and ( )f      for different values of  and Mn  can be 

observed from Figs.3(a) to 3(c) respectively. As ,  and S Mn  increases, the velocity and 

temperature profile increase and hence increase in the momentum and thermal boundary layer 

thickness is observed and the velocity distribution becomes linear for higher values of S . It is 

worth mentioning; an increase in the velocity and skin friction for large values of Mn  is 

marginal whereas in the case of temperature and wall temperature gradient it is large (See table 

2). This nature of  f   and  0f  may be attributed to Lorentz force thereby. Meanwhile, the 

temperature of the flow rises appreciably with the rise in Mn . Fig. 4(a) and Fig. 4(b) elucidate 

the effect of S on  f   in the presence and absence of the Maxwell parameter. As S increases, 

the transverse velocity profile increases in both cases. Fig.5 shows ( ) and ( )     profiles for 

various values S  along with varying values of iB .  It is evident from Fig 5. that decreasing the 

temperature and the local skin-friction coefficient. As iB increases, the internal thermal resistance 

of the plate is larger than the boundary layer thermal resistance. Hence, an increase in iB tends to 

increase in the fluid temperature efficiently. Moreover, ( )   converges to 0 along the sheet 

satisfying the boundary conditions. The nondimensional temperature and skin friction for 

different values of  and S M is plotted in Fig. 6. Increase in the thermocapillarity number M

(surface tension gradient), the temperature consistently cools down and decreases. Hence, the 

fluid layer just below the free surface is dragged along by the top layer due to viscous shear and 

also it shows that the temperature decreases with an increase in the thermocapillarity parameter. 

The decline of the flow temperature reduces the vibrating force in the fluid molecules. From 

mass conservation law, when the force in the flow direction decreases, the skin friction also 

decreases. Thus surface-tension gradients generate an interfacial flow that, through viscous drag, 

oppose the shear-driven motion due to the stretching sheet. This is even true for increasing 

values of S .Fig.7 demonstrate the effect of increasing values of  and PrS on ( ).  Augmented 

Pr results in a decrease in the temperature distribution and it tends to zero as the distance 

increases from the elastic sheet. For large Pr, the thermal boundary layer is contained within the 

lower part of the thin liquid film and the temperature gradients vanish adjacent to the free surface. 

Hence, the thermal boundary layer thickness decreases for large Pr and is exactly reversed in the 

case of S . 

In Table 2 we present the results for    0 , 0 andf    corresponding to different values 

of the physical parameters. For increasing values of S , skin friction, Nusselt number increases, 

whereas the values of the film thickness decrease, and this is true even in the case of Mn  also. 

Increase in  M results in a decrease in    0 and 0f   and increase in  . For increasing 

values of Pr, the Nusselt number decreases. 
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5. Conclusion 

The obtained numerical results via Keller-box method and its analysis lead to some of the 

following conclusions: 

 The velocity and the temperature increase with an increase in the unsteady parameter and 

the slip parameter. This phenomenon is true even with the applied magnetic field and the 

Maxwell parameter. 

 The increasing thermocapillarity parameter decreases the temperature, the local skin-

friction coefficient and the local Nusselt number. 

 The temperature profile broadens when the unsteady parameter increases.  

 An increase in the Biot number leads to an increase in the thermal boundary layer 

thickness. 

 The increasing value of the Prandtl number reduces the dimensionless temperature within 

the fluid film. 

 
Acknowledgments 



Hanumesh Vaidya, K.V. Prasad et al. 

International Journal of Thermofluid Science and Technology (2019), Volume 6, Issue 3, Paper No. 19060303 

 

20 
 

 

The authors appreciate the constructive comments of the reviewers which led to definite 
improvement in the paper. 
 

References 
 
Andersson, H. I., Aarseh, J. B. and Dandapat, B. S., “Heat Transfer in a Liquid Film on 

anUnsteady Stretching Surface,” International Journal of Heat and Mass Transfer, 43, 69-

74 (2000). 
Aziz RC, Hasim I, Almari AK. Thin film flow and heat transfer on an unsteady stretching sheet 

with internal heating. Meccanica; 46:349–57(2011). 
Chen, C. H. Heat transfer in a power-law fluid film over an unsteady stretching sheet. Heat and 

Mass Transfer,39, 791–796 (2003). 
Davis, S.H., Thermocapillary instabilities, Annu. Rev. Fluid Mech., 19 (1987), 403–435. 

Dandapat, B. S., Santra, B. and Anderson, H. I., “Thermocapillarity in a Liquid Film on 

Unsteady Stretching Surface,” International Journal of Heat and Mass Transfer, 46, 3009-

3015 (2003). 
Dandapat B.S,B.Santra, K.Vajravelu, The effect of variable fluid properties and 

thermocapillarity on the flow of a thin film on an unsteady stretching sheet, 

InternationalJournal of Heat and Mass Transfer, -96 (2007). 
Hayat, T., Ellahi, R., Mahomed, F.M.: Exact solutions for thin film flow of a third-grade fluid 

down an inclined plane. Chaos Solitons Fractals 38, 1336–1341 (2008).  
Hanumesh Vaidya, Manjunatha Gudekote, Rajashekhar Choudhari, Prasad K.V., Role of slip and 

heat transfer on peristaltic transport of Herschel-Bulkley fluid through an elastic tube, 

(2018), Multidiscipline Modeling in Materials and Structures, DOI: 10.1108/MMMS-11-

2017-0144.   

H.B. Keller, Numerical Methods for Two-point Boundary Value Problems, Dover Publ, New 

York (1992).  

KV Prasad, K Vajravelu, PS Datti, BT Raju, MHD Flow,and Heat Transfer in a Power-law 

Liquid Film at a Porous Surface in the Presence of Thermal Radiation, Journal ofApplied 

Fluid Mechanics, 6(3), 385-395, (2013). 

K Vajravelu, KV Prasad, Chiu-On Ng, Unsteady flow and heat transfer in a thin film of 

Ostwald–de Waele liquid over a stretching surface, CNSNS,17(11),4163-4173(2012). 
K. Vajravelu, K. V. Prasad, A. Sujatha, Convection heat transfer in a Maxwell fluid at a non-

isothermal surface, Cent. Eur. J. Phys. 9(3),807-815(2011) 
K. V. Prasad, K. Vajravelu, Hanumesh Vaidya, M. M. Rashidi, and Neelufer .Z.Basha, Flow and 

Heat Transfer of a Casson Liquid over a Vertical Stretching Surface: Optimal Solution, 

American Journal of Heat and Mass Transfer, (2018) Vol. 5 No. 1 pp. 1-22. 

doi:10.7726/ajhmt.2018.100. 

K. Vajravelu and K.V. Prasad, Keller-box method and its application, HEP and Walter De 

Gruyter GmbH, Berlin/Boston (2014). 

K. V. Prasad, H. Vaidya,and K. Vajravelu, MHD Mixed Convection Heat Transfer in a Vertical 

Channel with Temperature-Dependent Transport Properties,Journal of Applied Fluid 

Mechanics, Vol. 8, No. 4, pp. 693-701, (2015). 



Hanumesh Vaidya, K.V. Prasad et al. 

International Journal of Thermofluid Science and Technology (2019), Volume 6, Issue 3, Paper No. 19060303 

 

21 
 

 

K. V. Prasad, K. Vajravelu, and H. Vaidya, MHD Casson Nanofluid Flow and Heat Transfer at a 

Stretching Sheet with Variable Thickness, Journal of Nanofluids, Vol.5(3), (2016), pp. 

423-435(13). 
K. V. Prasad, H. Vaidya,K. Vajravelu, M. M. Rashidi, Effects of variable fluid properties on 

MHD flow and heat transfer over a stretching sheet with variable thickness, Journal of 

Mechanics, 33(4), 501-512. doi:10.1017/jmech.2016.101. 

Liu I. C., Anderson, H.I. Heat transfer in a liquid film on an unsteady stretching 

sheet.International Journal of Thermal Sciences, 47(6): 766-772(2008). 
Makinde, O.D.: Thermal criticality for a reactive gravity-driven thin film flow of a third-

grade fluid with adiabatic free surface down an inclined plane. Appl. Math. Mech.30, 

373–380 (2009) 

M Sabeel. Khana, M. Hammad, S. Batool, and H. Kaneez Investigation of MHD effects and heat 

transfer for the upper-convected Maxwell (UCM-M) micropolar fluid with Joule heating 

and thermal radiation using a hyperbolic heat flux equation, Eur. Phys. J. Plus 132: 158 

(2017). 

Noor N. F. M., Abdulaziz O.,and Hasim I. MHD flow and heat transfer in a thin liquid film on a 

unsteady stretching sheet by the Homotopy analysis method.International Journal for 

Numerical Methods in Fluids, 63(3): 357-373 (2010). 
S. Asghar, T. Hayat, A. H. Kara, Exact solutions of thin film flows, Nonlinear Dyn,50:229–

233(2007). 

S.Saleem, M.Awais, S.Nadeem, N.Sandeep, M.T.Mustafa, Theoretical analysis of upper-

convected Maxwell fluid flow with Cattaneo–Christov heat flux model, Chinese Journal 

of Physics, 55(4), 1615-1625, (2017).  

Sohail Nadeem, Shafiq Ahmad, Noor Muhammad, M.T. Mustafa, Chemically reactive species 

inthe flow of a Maxwell fluid, Results in Physics, 7 ,2607–2613(2017). 
T. Hayat Z. Abbas, M. Sajid Series solution for the upper-convected Maxwell fluid over aporous 

stretching plate, Physics Letters A 358 396–403(2006). 

V. Kumaran, R. Tamizharasi, J. H. Merkin, K. Vajravelu, On thin film flow of a third-grade fluid 

down an inclined plane, Arch Appl Mech ,82:261–266(2012). 

Wang CY. Liquid film on an unsteady stretching surface. Quart Appl Math; 48:601–10 (1990). 

Wang, C., Analytic Solutions for a Liquid Thin Film on an Unsteady Stretching Surface, Heat 

and Mass Transfer, 42, 759-766(2006). 
Wang, C. and Pop, I. Analysis of the flow of a power-law fluid film on an unsteady stretching 

surface by means of homotopy analysis method. Journal of Non-Newtonian Fluid 

Mechanics, 138, 161–172 (2006). 
 

Table1: Variation of skin friction (0)f   and dimensionless film thickness  with the 

unsteady parameter S  for Newtonian fluid when 0Pr 1.0, 0.0.iMn M B k        

S
 

Wang (2006) Noor et al. (2010) Aziz et al. (2011) 
Vajravelu et 

al.(2012) 
Present work 

(0)f     (0)f     (0)f     (0)f     (0)f     

0.8 -2.680940 2.151990 -2.680940 2.15199 - 2.680943 2.151994 -2.677546 2.149956 -2.68094 2.15199 

1.0 -1.972380 1.543620 -1.972380 1.54362 - 1.972384 1.54362 -1.967298 1.540905 -1.97238 1.54362 
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1.2 -1.442631 1.127780 -1.442631 1.12778 - 1.442625 1.127780 -1.435752 1.124422 -1.44263 1.12778 

1.4 -1.012784 0.821032 -1.012784 0.821032 - 1.012784 0.821032 -1.003991 0.816898 -1.012780 0.821032 

1.6 -0.642397 0.567173 -0.642397 0.576173 - 0.642397 0.576173 -0.631578 0.570868 -0.631597 0.576173 

1.8 - 0.309137 0.356389 −0.309137 0.356389 - 0.309137 0.356389 -0.296197 0.348569 -0.296197 0.348569 
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Table 2: Variation of skin friction (0)f  , wall-temperature gradient (0)  and dimensionless film thickness  , for different 1 

values of the physical parameters. 2 

Pr  iB  M  Mn    S  
(0)f   (0)    (0)f   (0)    (0)f   (0)    

0 0.0k   0 0.02k   0 0.04k   

1.0 0.5 0.0 0.5 0.2 

0.6 -3.501704 0.116937 2.440094 -3.075872 0.124248 2.329543 -2.754911 0.130856 2.237056 

0.8 -2.550409 0.150815 1.735566 -2.298145 0.158328 1.666025 -2.097146 0.165275 1.606015 

1.0 -1.901519 0.188370 1.283763 -1.740643 0.196373 1.236551 -1.607706 0.203892 1.195033 

1.2 -1.403382 0.233623 0.962834 -1.298230 0.242467 0.929741 -1.209076 0.250868 0.900248 

1.4 -0.989572 0.293908 0.716298 -0.922168 0.304048 0.693019 -0.863933 0.313736 0.672060 

1.6 -0.626387 0.385783 0.510999 -0.586813 0.397697 0.495156 -0.552139 0.409058 0.480777 

Pr  M  Mn  0k    S  0.05iB   0.5iB   1.0iB   

1.0 0.0 0.5 0.02 0.2 

0.6 -3.075872 0.002829 2.329543 -3.075872 0.124248 2.329543 -3.075872 0.221033 2.329543 

0.8 -2.298145 0.003748 1.666025 -2.298145 0.158328 1.666025 -2.298145 0.273374 1.666025 

1.0 -1.740643 0.004863 1.236551 -1.740643 0.196373 1.236551 -1.740643 0.328281 1.236551 

1.2 -1.298230 0.006361 0.929741 -1.298230 0.242467 0.929741 -1.298230 0.390299 0.929741 

1.4 -0.922168 0.008662 0.693019 -0.922168 0.304048 0.693019 -0.922168 0.466314 0.693019 

1.6 -0.586813 0.013034 0.495156 -0.586813 0.397697 0.495156 -0.586813 0.569074 0.495156 

Pr  iB  Mn  0k    S  0.0M   0.5M   1.0M   

1.0 0.5 0.5 0.02 0.2 

0.6 -3.075872 0.124248 2.329543 -3.083758 0.123904 2.336536 -3.091433 0.123572 2.343338 

0.8 -2.298145 0.158328 1.666025 -2.311112 0.157321 1.677409 -2.323454 0.156379 1.688218 

1.0 -1.740643 0.196373 1.236551 -1.760187 0.193752 1.254099 -1.778170 0.191427 1.270129 

1.2 -1.298230 0.242467 0.929741 -1.326416 0.235911 0.956349 -1.351055 0.230588 0.979207 

1.4 -0.922168 0.304048 0.693019 -0.961877 0.287520 0.733681 -0.994023 0.275898 0.765363 

1.6 -0.586813 0.397697 0.495156 -0.642114 0.353881 0.559421 -0.682100 -0.329523 0.602214 

Pr  iB  M  0k    S  0.0Mn   1.0Mn   3.0Mn   

1.0 0.5 0.0 0.02 0.2 

0.6 -3.170049 0.102874 2.812084 -3.028628 0.142551 2.035747 -2.956964 0.201827 1.462821 

0.8 -2.344776 0.135143 1.956784 -2.271871 0.178735 1.476131 -2.227871 0.245962 1.083291 

1.0 -1.762500 0.171460 1.420195 -1.727302 0.218744 1.109762 -1.703130 0.293237 0.832449 

1.2 -1.307791 0.215314 1.048795 -1.292031 0.267119 0.843805 -1.280031 0.349150 0.646222 

1.4 -0.925892 0.273743 0.770557 -0.919631 0.331551 0.634994 -0.914433 0.421513 0.495588 
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Pr  iB  M  0k  Mn  S  0.0   0.4   2.0   

1.0 0.5 0.0 0.02 0.5 

0.6 -3.142838 0.117812 2.457346 -3.018183 0.130558 2.217216 -2.752479 0.176543 1.653901 

0.8 -2.339503 0.151366 1.744182 -2.261882 0.165173 1.596136 -2.085332 0.215580 1.227034 

1.0 -1.765215 0.189221 1.284270 -1.718646 0.203427 1.193070 -1.604011 0.255993 0.949362 

1.2 -1.311908 0.235424 0.957920 -1.285711 0.249428 0.903565 -1.215292 0.301744 0.747050 

1.4 -0.928956 0.297505 0.708430 -0.915812 0.310518 0.678424 -0.876994 0.359350 0.584958 

1.6 -0.589496 0.392319 0.502306 -0.584244 0.403012 0.488256 -0.567120 0.443218 0.440760 

  iB  M  0k  Mn  S  Pr 1.0  Pr 2.0  Pr 5.0  

0.2 0.5 0.0 0.02 0.5 

0.6 -3.075872 0.124248 2.329543 -3.075872 0.087421 2.329543 -3.075872 0.055059 2.329543 

0.8 -2.298145 0.158328 1.666025 -2.298145 0.112518 1.666025 -2.298145 0.071858 1.666025 

1.0 -1.740643 0.196373 1.236551 -1.740643 0.140227 1.236551 -1.740643 0.090607 1.236551 

1.2 -1.298230 0.242467 0.929741 -1.298230 0.173132 0.929741 -1.298230 0.112753 0.929741 

1.4 -0.922168 0.304048 0.693019 -0.922168 0.216504 0.693019 -0.922168 0.141183 0.693019 

1.6 -0.586813 0.397697 0.495156 -0.586813 0.283969 0.495156 -0.586813 0.183726 0.495156 

 3 


