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Abstract 

Present paper mathematically discusses unsteady MHD free convection flow of thermally 

conducting, chemically reacting, and rotating fluid over a vertical plate due to moving free-

stream. The applied magnetic field is considered to be strong enough to generate Hall and ion-

slip currents. The wall temperature and concentration are considered to be linearly varying with 

time. Laplace transform technique is successfully implemented to solve the resulting partial 

differential equations representing the fluid motion. The expression for fluid velocity is derived 

in four special cases., i.e. (i) for those fluids whose viscosity, thermal diffusivity and molecular 

diffusivity are not of same order of magnitude,  (ii) for those fluids whose viscosity and thermal 

diffusivity are of same order of magnitude while molecular diffusivity is of different order, (iii) 

for those fluids whose viscosity and  molecular diffusivity are of same order of magnitude while 

thermal diffusivity is of different order, and (iv) for those fluids whose viscosity, thermal 

diffusivity and molecular diffusivity are of same order of magnitude. To discuss the specific 

features of the flow, numerical computation is carried out. The variations in fluid velocity, fluid 

temperature and concentration are presented through graphs whereas skin friction coefficient, 

rate of heat and mass transfer are presented in tables. A notable observation recorded that in the 

absence of thermal buoyancy force there appears reverse flow in the secondary flow direction 

while in the absence of concentration buoyancy force there does not exists reverse flow in the 

secondary flow direction.  

Keywords: Free convection; Free-stream; Hall and ion-slip currents; Rotation. 
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1. Introduction 

Study of free or natural convection flow is significant because it is frequently encountered 

by the engineers and scientists in many natural, technological and biological systems. It is widely 

accepted that it arises due to variation is density in the field of gravity. The variation in density 

may occur either due to non-uniform heating or due non-uniform species distributions or due to 

both. Free convection is a process of heat and mass transfer in fluid. Convective heat transfer 

may find significant engineering and industrial applications such as heat exchangers, thermal 

insulators, electronic equipment cooling systems etc. Convective mass transfer arises in many 

biological and chemical processes such as absorption, drying, precipitation, distillation, filtration 

etc. Stimulated form enormous industrial applications many researchers studied free convective 

flow problems considering different geometries by using various analytical and numerical 

methods. Some relevant contributions to the free convective flows are due Hsieh et al. (1993), 

Vasseur and Degan (1998), Bachok et al. (2010), Chang et al. (2011), Khan et al. (2014), Hayat 

et al. (2014), Kamran et al. (2014), and Das et al. (2015). Motion of electrically conducting fluid 

in the presence of an applied magnetic field produces a flow controlling force. This flow 

controlling force plays a prominent role in determination of flow behavior. This flow controlling 

nature is significant in boundary layer control. In biological system, it is important in reduction 

of blood flow rate in arterial system, which is useful in treatment of some cardiovascular 

disorders and in the problems which increase the rate of circulation of blood such as 

haemorrhage and hypertension. MHD free convective flow of electrically and thermally 

conducting and chemically reacting fluid is an enormously growing topic of research due to its 

presence in natural, technological and biological systems  and industrial applications viz. nuclear 

engineering, chemical industries, aerodynamics and polymer processing.  Rahman and 

Salahuddin (2010) studied the heat and mass transfer behaviour of hydromagnetic flow over an 

inclined surface with variable viscosity and electrical conductivity. Rajput and Kumar (2012) 

discussed the influence of heat radiation on unsteady MHD boundary layer flow over an 

impulsively moving vertical plate with time varying wall temperature and concentration. 

Moreover, Narhari and Debnath (2013) presented the MHD free convective flow over an 

accelerated vertical plate with heat source/sink. Butt and Ali (2016) analysed the entropy 

generation on hydromagnetic free convective flow over an oscillating plate. Das et al. (2016) 

studied the Hall current influence on unsteady MHD free convective flow over an impulsively 

moving surface by considering ramped wall temperature and concentration. They found that 

ramped wall temperature significantly affecting the velocity profiles. Permeability of the porous 

medium exerts a flow controlling force on the fluid flows which is like the flow controlling force 

induced by magnetic field. In recent years, study of MHD free convective flow through the 

porous medium has attracted the attention from several researchers due to its various industrial 

and technological applications such as extraction of petroleum products from exploration wells, 

geothermal energy extraction, metallurgy of metals etc.  Balamurugan et al. (2015) analysed the 

influence of time dependent suction and chemical reaction on unsteady MHD free convective 

flow over a moving vertical plate embedded in porous medium. Subsequently, Rama Mohan 

Reddy et al. (2016) investigated fully developed unsteady MHD free convective flow of rotating 

fluid through porous medium over an infinite vertical porous plate. They found that Schemidt 
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number suppresses the momentum boundary layer thickness. Singh et al. (2016) analysed the 

influence of Hall current and rotation on unsteady MHD free convective flow over an 

exponentially accelerated vertical with ramped wall temperature and fluctuating concentration. 

They noticed in their investigation that thermal diffusion tends to raise the momentum and 

thermal boundary layer thicknesses. Thermal radiation effects on MHD free convection flow 

over a vertical plate implanted in porous medium with ramped wall temperature is presented by 

Pandit et al. (2017).  It is seen that the radiation parameter tends to reduce the thermal boundary 

layer thickness. Recently, Ali et al. (2017) discussed unsteady MHD boundary layer flow of a 

second grade fluid over an oscillating plate embedded in porous medium with thermal radiation 

effect. Some significant contributions to the topic are also due to El-Kabeir et al. (2007), Beg et 

al. (2009), Das (2011), Seth et al. (2011), Seth and Sarkar (2015), Hossain et al. (2015) and 

Hussain et al. (2017). It is praiseworthy to note that in some industrial and technological 

applications applied magnetic field is strong enough to produce Hall and ion-slip currents. In 

such situations combined influence of Hall and ion-slip currents cannot be neglected from MHD 

fluid flows.  The combined effects of Hall and ion-slip currents on unsteady MHD boundary 

layer flow past a semi-infinite vertical plate are discussed by Abo-Eldahab and Aziz (2000), 

Hossain et al. (2015), Singh et al. (2017) and Singh and Srinivasa (2018).  In the above 

mentioned research investigations unsteadiness in the boundary layer flow appears due to 

movement of the plate. Lighthill (1954) was firstly investigated the response of fluctuation of 

free-stream to the two-dimensional boundary layer flow about a cylindrical body because 

fluctuation of free-stream arises in some technological systems. He observed that maximum of 

the skin friction at any point anticipate the maximum of the free-stream velocity. Later on, 

Messiha (1965) implemented this idea in investigation of two-dimensional oscillatory boundary 

layer flow over an infinite flat porous plate. Patil and Roy (2010) discussed the influence of heat 

generation/absorption on unsteady mixed convective boundary layer flow due to moving vertical 

plate and free-stream. Sarkar and Seth (2017) analysed the influence of Hall current, rotation and 

heat absorption on unsteady MHD free convective flow over a vertical plate embedded in porous 

medium due to impulsive and accelerated movement of the free-stream whereas Seth et al.  

(2017) discussed this problem for exponentially accelerated free stream. An interesting result 

noted in their studies that reverse flow arises in the secondary flow direction due to presence of 

thermal buoyancy force.  Recently, Singh et al. (2017) presented an analytical study of unsteady 

MHD free convective flow of a rotating fluid induces due of fluctuation of the free-stream 

considering Hall and ion-slip currents into account. They found that reverse flow appears in the 

secondary flow direction even in the absence of thermal and solutal buoyancy forces. Similar 

observation recorded in the investigation of Singh et al. (2018). However the impacts of time 

vary wall temperature and concentration are not considered in these investigations which may 

appear in some technological systems. The motive in this paper is to study the impacts of time 

varying wall temperature and concentration on unsteady MHD free convective flow of thermally 

conducting, chemically reacting and rotating fluid over a vertical plate due to exponentially 

accelerated free-stream with rotation, Hall and ion-slip currents. The mathematical model of the 

present problem is governed by the coupled partial differential equations and it is solved by 

using Laplace transform method. A remarkable observation recorded from the present problem 

that in the absence of thermal buoyancy force there appears reverse flow in the secondary flow 
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direction while in the absence of concentration buoyancy force there does not exists reverse flow 

in the secondary flow direction. 

2. Mathematical Modeling of the Problem 

Let us consider the free convection boundary layer flow of a thermally conducting, 

chemically reacting and rotating fluid over a vertical plate under the action of a strong applied 

magnetic field. Reference system for the flow is chosen in such a way that x z  -plane is 

coincident with the plate and y -axis is normal to it. The flow system is considered to be rotating 

uniformly with angular velocity   about the axis normal to the plate and magnetic field  0B  is 

applied along the axis of rotation. At initial stage 0,t   the entire flow system is stationary and 

plate temperature and concentration are considered to be T  
and C respectively. Suddenly, 

when 0,t   the plate temperature and concentration varying linearly with the time while plate 

remains stationary. The free-stream is set up into motion with velocity  
2
0

0
/ ,

U t
U e   where 0U  is 

uniform velocity while free-stream temperature and concentration are remains unchanged. In the 

present analysis all flow variables depend on y  and t  only. In this analysis fluid is considered 

to be such that its magnetic diffusivity is very large, so induced magnetic field can be neglected 

(Sutton and Sherman (1965)). Further, it is assumed that the boundary layer and Boussinesq 

approximations holds good.  

In the essence of above made assumptions, and approximations the system of equations 

describing free convective boundary layer flow of a rotating fluid over a vertical plate with Hall 

and ion-slip currents are given by (Seth et al. (2016) and Singh et al. (2017)) 

the momentum equations:  

   

   

22
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2 2 2
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,
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e e

T C
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t t ky
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  
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         
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                                                   (2)

 

the energy equation with heat source: 

 
2

0

2
p p

QT k T
T T

t C Cy 


  
   

 
                                                                                              (3)

 

the concentration equation with chemical reaction:    

 
2

2

C C
D K C C

t y


  
    

 
                                                                                                     (4) 
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where 1e i e    and 0, , , , , , , , , , , , , ,i e T C pg T C k k C Q D            and K   are respectively, 

kinematic coefficient of viscosity, fluid density, electrical conductivity, ion-slip parameter, Hall 

current parameter, acceleration due to gravity, volumetric coefficient of thermal expansion, 

volumetric coefficient of species concentration expansion, fluid temperature, species 

concentration, permeability of the porous medium, thermal conductivity of the fluid, specific 

heat at constant pressure, heat source coefficient, molecular diffusivity and chemical reaction 

parameter. 

The Initial and boundary conditions to be satisfied are given by 

 

   

 

 
2
0

2 2
0 0

0

0 : 0, , , for 0 , 5

0, , , at 0,
0 : 6

/ , 0, , , as .

w w

U t

t u w T T C C y

U t U t
u w T T T T C C C C y

t

u U t U e w T T C C y

 



 

   

 

            

  
                  

  
               

Following non-dimensional variables are introduced to transform the dimensional 

governing equations (1)-(4) and initial and boundary conditions (5) and (6) into non-dimensional 

form 

2
0 0

0 0 0

, , , , , , , .
w w

y U t Uu w T T C C U
y u w t T C f q u iw

U U T T C C U 
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 
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    
 

On using the above defined transformation the flow governing equations (1)-(4) reduces to 

the following non dimensional equations 

 
2

32 T C

q f q
X f q G T G C

t t y

  
     
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                                                                                 (7) 

2

2

1

Pr

T T
T

t y


 
 

 
                                                                                                                    (8) 

2

12

1C C
K C

t Sc y

 
 

 
                                                                                                                 (9) 

where    2 2
1 11/ / ,e e eX k M        2 2

2 2 / ,e e eX E M     3 1 2 ,X X iX  2 2
0 0/M B U   is 

magnetic parameter, 2
0/E U  is rotation parameter, 2 2

1 0 /k k U   is permeability parameter, 

  3
0/T T wG g T T U       is thermal Grashof number,   3

0/C C wG g C C U       is solutal Grashof 

number, Pr /pC k  is Prandtl number, 2
0 0/ pQ C U    is heat absorption parameter, 

/Sc D  is Schmidt number, and 2
1 0/K K U  is chemical reaction parameter. 

The non-dimensional initial and boundary conditions are given by 
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 

0 : 0, for 0, (10)

0, , at 0,
0 : (11)

, , 0, as .t

t q T C y

q T C t y
t

q f t e T C y

    

   
 

     

Simultaneous system of partial differential equations (7)-(9) represents the mathematical 

model of the present problem subject to the initial and boundary conditions (10) and (11). 

3. Solution of the Problem 

To solve equations (7)-(9) subject to initial and boundary conditions (10) and (11) the 

Laplace transform method is used. The solution for fluid velocity is obtained in the following 

four cases: 

Case (i): When viscosity thermal diffusivity and molecular diffusivity of the fluid are not of 

same order of magnitude i.e., Pr 1 and 1,Sc   the fluid velocity is given by 

 

 
 

     

     

 
     

 

1 3 1 3 4 2 3 1 3 42
4

1 4 2 1 4

1 3 5 2 3 1 3 52
5

1 1 5 2

,
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, ,1, ,0 , ,1, ,0 , ,1, ,
1

, , , ,0 , , ,

t T

C

q y t

G
e F y t X F y t X X F y t X F y t X X

X

F y t X F y t F y t X

G
F y t X X F y t X F y t X X

Sc X

F y t Sc K X F y t Sc K

  

     


    

   


     1 1 1 5,0 , , , , , (12)F y t Sc K X  


 

 

where          4 3 5 1 3Pr / Pr 1 , / 1 ,X X X ScK X Sc       
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   
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 
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            

     

   
            

   
              

 

Case (ii):  When viscosity and thermal diffusivity of the fluid are of same order of 

magnitude while molecular diffusivity is of different order i.e., Pr 1, 1,Sc  the fluid velocity is 

expressed as 
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 
 

   

 
     
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1

, , , ,0 , , , ,0 , , , , (13)

t T

C

G
q y t e F y t X F y t X F y t

X

G
F y t X X F y t X F y t X X

Sc X

F y t Sc K X F y t Sc K F y t Sc K X




     

   


   
  

Case (iii):  When viscosity and molecular diffusivity of the fluid are same order of 

magnitude while thermal diffusivity is of different order i.e., Pr 1, 1,Sc  the expression for fluid 

velocity is, 

   
 

     

     

 
   
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X
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   

 

Case (iv): When viscosity, thermal diffusivity and molecular diffusivity are same order of 

magnitude i.e., Pr 1, 1,Sc  the fluid velocity is 

 
 

   

 
   

1 3 2 3 2
3

2 3 2 1
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t T

C

G
q y t e F y t X F y t X F y t
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


     

   
 

The solution for fluid temperature and species concentration are, respectively, expressed as 

follows 

   2, , ,Pr, ,0T y t F y t                                                                                                          (16) 

   2 1, , , , ,0C y t F y t Sc K                                                                                                       (17) 

4. Skin Friction Coefficient and Rate of Heat and Mass Transfer at the Plate 

The skin friction coefficient for the fluid whose viscosity, thermal diffusivity and molecular 

diffusivity are not of same order of magnitude, is expressed as 
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 
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where  
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            

 

The skin friction coefficient for the fluid whose viscosity and thermal diffusivity are same 

order of magnitude while molecular diffusivity is of different order, is given by 
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                                           (19) 

The expression for the skin friction coefficient for the fluid whose viscosity and thermal 

diffusivity are of same order of magnitude while molecular diffusivity is of different order is 

 
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                     (20) 

The skin friction coefficient for the fluid whose viscosity, thermal diffusivity and molecular 

diffusivity are of same order of magnitude is  
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                                                          (21) 

The Nusselt and Sherwood numbers, which express the rate of heat and mass transfers at the 

plate respectively, are presented as 

 4 ,Pr, ,0Nu F t                                                                                                                 (22) 

 4 1, , ,0Sh F t Sc K                                                                                                               (23) 

5. Results and Discussion 

A numerical computation has been performed to get the impacts of various system 

parameters on velocity profiles, temperature profiles, concentration profiles, skin friction 

coefficient and rate of heat and mass transfer at the plate. The velocity profiles for the fluid are 

presented in Figs. 1-12 whereas Figs. 13-16 and Figs. 16-18, respectively, demonstrate the 

temperature and concentration profiles. The change in flow behavior corresponds to change in 

Hall and ion-slip currents are displayed in the Figs. 1 and 2. It can be easily noticed that both 

Hall and ion-slip currents have tendency to suppress the primary flow in the neighboring 

boundary layer region of the plate while this tendency is upturned near the free-stream. This may 

be due to the fact that flow induces due to moving free-stream along the primary flow direction. 

Hall current tends to raise the secondary flow in the boundary layer regions adjacent to plate and 

free-steam, which is the usual tendency of Hall current to induce secondary flow. Ion-slip current 

shows the opposite behavior as that of Hall current on the secondary flow. The action of Coriolis 

force and magnetic force on the fluid flow are demonstrated in Figs. 3 and 4. Both the Coriolis 

and magnetic forces tend to raise primary flow in the boundary layer region adjacent to the plate 

while this tendency is upturned in the boundary layer region near the free-stream. Both Coriolis 

and magnetic forces have tendency to raise secondary flow in the boundary layer region adjacent 

to the plate and free-stream. In general Coriolis force has tendency to induce secondary flow, our 

result is in agreement with this. Darcian drag force effects are presented in Fig. 5. Daracian drag 

force is inversely proportional to the permeability of the porous medium. Daracian drag force 

shows similar behavior as that of magnetic force on the primary flow and it shows the reverse 

behavior as that of magnetic force on the secondary flow. The Daracian drag force has flow 

controlling nature. Our result also comply it except in the boundary layer region adjacent to the 

plate, which may be due to the fact that the flow is induced due to moving free-stream. 

Buoyancy forces effects on flow behavior are illustrated in Figs.  6 and 7. Primary flow gets 

raised on rising thermal and solutal Grashof numbers. Since rise in thermal and solutal Grashof 

numbers give rise in thermal and concentration buoyancy effects respectively. This concludes 

that thermal and concentration buoyancy forces tend to raise primary flow. It is also seen that 

reverse flow induces in the secondary flow direction. On rising the buoyancy forces, secondary 
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flow fall down in the boundary layer region adjacent to the plate while this tendency is upturned 

in the boundary layer region adjacent to the free-stream. A remarkable observation recorded that 

in the absence of thermal buoyancy force there appears reverse flow in the secondary flow 

direction while in the absence of concentration buoyancy force there does not exist reverse flow 

in the secondary flow direction. Influence of progression of time on the flow behavior is 

displayed in Fig.  8. It can be easily noticed that primary flow gets raised as time progresses. As 

time progresses secondary flow get enhanced in the boundary layer region in the vicinity of the 

plate and free-stream. Figs. 9 and 11, respectively, represent the consequences of thermal and 

mass diffusions on the fluid flow. Primary flow get reduced on raising Prandtl and Schmidt 

numbers, which indicates that thermal and mass diffusions tend to rise the  primary flow. 

Reverse flow induces in the secondary flow direction and these have similar influences as that of 

buoyancy forces on the secondary flow. Variation in the flow behavior corresponds to heat 

absorption is shown in the Fig. 10 whereas Fig. 12 represents variation in flow behavior 

corresponds to chemical reaction. It is observed that primary flow fall down on raising the heat 

absorption and chemical reaction respectively. Reverse flow exists in the secondary flow 

direction and heat absorption and chemical reaction show the opposite nature as that of buoyancy 

forces on the secondary flow. 

            
(a)                                                                               (b) 

Fig.1  Velocity profiles in the (a) primary and (b) secondary flow directions when 

1 10.5, 1, 9, 0.3, 4, 5, 0.5,Pr 0.71, 1, 0.22, 0.2.i T CE M k G G t Sc K             

              
(a)                                                                            (b) 
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Fig.2 Velocity profiles in the (a) primary and (b) secondary flow directions when 

1 10.5, 1, 9, 0.3, 4, 5, 0.5,Pr 0.71, 1, 0.22, 0.2.e T CE M k G G t Sc K             

      
(a)                                                                                      (b) 

Fig.3 Velocity profiles in the (a) primary and (b) secondary flow directions when 

1 10.5, 0.5, 9, 0.3, 4, 5, 0.5,Pr 0.71, 1, 0.22, 0.2.e i T CM k G G t Sc K              

 

        
(a)                                                                                       (b) 

Fig.4 Velocity profiles in the (a) primary and (b) secondary flow directions when 

1 10.5, 0.5, 1, 0.3, 4, 5, 0.5,Pr 0.71, 1, 0.22, 0.2.e i T CE k G G t Sc K              
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Fig.5 Velocity profiles in the (a) primary and (b) secondary flow directions when 

1 10.5, 0.5, 1, 9, 0.3, 5, 0.5,Pr 0.71, 1, 0.22, 0.2.e i CE M k G t Sc K              

 

             
(a)                                                                            (b) 

Fig.6 Velocity profiles in the (a) primary and (b) secondary flow directions when 

1 10.5, 0.5, 1, 9, 0.3, 5, 0.5,Pr 0.71, 1, 0.22, 0.2.e i CE M k G t Sc K              

 

        

(a)                                                                           (b)                                                                                                    

Fig.7 Velocity profiles in the (a) primary and (b) secondary flow directions when 

1 10.5, 0.5, 1, 9, 0.3, 4, 0.5,Pr 0.71, 1, 0.22, 0.2.e i TE M k G t Sc K              
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(a)                                                                      (b) 

Fig.8 Velocity profiles in the (a) primary and (b) secondary flow directions when 

1 10.5, 0.5, 1, 9, 0.3, 4, 5, Pr 0.71, 1, 0.22, 0.2.e i T CE M k G G Sc K              

      

(a)                                                                       (b) 

Fig.9 Velocity profiles in the (a) primary and (b) secondary flow directions when 

1 10.5, 0.5, 1, 9, 0.3, 4, 5, 0.5, 1, 0.22, 0.2.e i T CE M k G G t Sc K              

       

(a)                                                                      (b) 

Fig.10 Velocity profiles in the (a) primary and (b) secondary flow directions when 

1 10.5, 0.5, 1, 9, 0.3, 4, 5, 0.5,Pr 0.71, 0.22, 0.2.e i T CE M k G G t Sc K             
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(a)                                                                        (b) 

Fig.11 Velocity profiles in the (a) primary and (b) secondary flow directions when 

1 10.5, 0.5, 1, 9, 0.3, 4, 5, 0.5,Pr 0.71, 1, 0.2.e i T CE M k G G t K              

      

(a)                                                                                         (b) 

Fig. 12 Velocity profiles in the (a) primary and (b) secondary flow directions when 

10.5, 0.5, 1, 9, 0.3, 4, 5, 0.5,Pr 0.71, 1, 0.22.e i T CE M k G G t Sc              

Figs. 13 and 16 respectively, display the variation in the temperature and concentration 

corresponds to the time. It is observed that temperature and concentration get rise as time passes. 

Impacts of thermal diffusion on fluid temperature are demonstrated in Fig.14 while the impacts 

of mass diffusion on concentration are shown in the Fig. 17.  Fluid temperature falls down on 

raising the Prandtl number while concentration falls down on raising the Schmidt number. This 

concludes that thermal diffusion tends to rise fluid temperature while mass diffusion tends to 

raise concentration. Also it is noticed that thermal diffusion has tendency to raise thermal 

boundary layer thickness. Mass diffusion has also similar nature on concentration boundary layer 

thickness. Figs. 15 and 18, respectively, illustrate the influences of heat absorption on fluid 

temperature and consequences of chemical reaction on concentration. It can be easily seen that 

heat absorption has tendency to reduce fluid temperature while chemical reaction has similar 

tendency on concentration. 
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Fig. 13  Temperature profiles when   Pr 0.71   and   1.   

 

Fig. 14  Temperature profiles when 0.5t   and 1.   

 

Fig. 15  Temperature profiles when  0.5t   and Pr 0.71  
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Fig. 16 Concentration profiles when 0.22Sc   and 1 0.2.K   

 

Fig. 17 Concentration profiles when 0.5t   and 1 0.2.K   

 

Fig. 18 Concentration profiles when 0.5t   and 0.22.Sc 
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current, Darcian drag force, thermal and concentration buoyancy forces and thermal and mass 

diffusions. Consequences of various system parameters on the rate of heat and mass transfer 

behavior at the plate are illustrated in the tables 2 and 3. It is noted that rate of heat and mass 

transfer get enhanced as time progresses. Rate of heat transfer at the plate fall down on raising 

the thermal diffusion while rate of mass transfer at the plate fall down on raising mass diffusion. 

Heat absorption tends to raise rate of heat transfer at the plate while chemical reaction tends to 

raise rate of mass transfer at the plate. 

Table1 Skin friction coefficient at the plate 

e  i  E  M  1k  TG  CG  t  Pr    Sc  1K  x  z  

0.25 0.5 1 9 0.3 4 5 0.5 0.71 1 0.22 0.2 6.6849 0.7802 

0.5 0.5 1 9 0.3 4 5 0.5 0.71 1 0.22 0.2 6.4120 0.9924 

0.75 0.5 1 9 0.3 4 5 0.5 0.71 1 0.22 0.2 6.1705 1.0996 

0.5 1 1 9 0.3 4 5 0.5 0.71 1 0.22 0.2 6.2101 0.8733 

0.5 2 1 9 0.3 4 5 0.5 0.71 1 0.22 0.2 5.9149 0.7448 

0.5 0.5 2 9 0.3 4 5 0.5 0.71 1 0.22 0.2 6.5009 1.4108 

0.5 0.5 3 9 0.3 4 5 0.5 0.71 1 0.22 0.2 6.6106 1.8083 

0.5 0.5 1 12 0.3 4 5 0.5 0.71 1 0.22 0.2 6.8678 1.0873 

0.5 0.5 1 15 0.3 4 5 0.5 0.71 1 0.22 0.2 7.2920 1.1760 

0.5 0.5 1 9 0.05 4 5 0.5 0.71 1 0.22 0.2 9.3187 0.6621 

0.5 0.5 1 9 2 4 5 0.5 0.71 1 0.22 0.2 5.7750 1.1225 

0.5 0.5 1 9 0.3 0 5 0.5 0.71 1 0.22 0.2 6.0313 1.0361 

0.5 0.5 1 9 0.3 2 5 0.5 0.71 1 0.22 0.2 6.2217 1.0142 

0.5 0.5 1 9 0.3 4 0 0.5 0.71 1 0.22 0.2 5.8477 1.0704 

0.5 0.5 1 9 0.3 4 3 0.5 0.71 1 0.22 0.2 6.1863 1.0236 

0.5 0.5 1 9 0.3 4 5 0.25 0.71 1 0.22 0.2 4.6627 0.8185 

0.5 0.5 1 9 0.3 4 5 0.75 0.71 1 0.22 0.2 8.5324 1.2086 

0.5 0.5 1 9 0.3 4 5 0.5 0.03 1 0.22 0.2 6.5395 0.9548 

0.5 0.5 1 9 0.3 4 5 0.5 1.5 1 0.22 0.2 6.3635 1.0033 

0.5 0.5 1 9 0.3 4 5 0.5 0.71 3 0.22 0.2 6.3895 0.9969 

0.5 0.5 1 9 0.3 4 5 0.5 0.71 5 0.22 0.2 6.3714 1.0004 

0.5 0.5 1 9 0.3 4 5 0.5 0.71 1 0.78 0.2 6.3299 1.0149 

0.5 0.5 1 9 0.3 4 5 0.5 0.71 1 2 0.2 6.2529 1.0321 

0.5 0.5 1 9 0.3 4 5 0.5 0.71 1 0.22 2 6.3902 0.9977 

0.5 0.5 1 9 0.3 4 5 0.5 0.71 1 0.22 5 6.3616 1.0046 

Table 2 Nusselt number 

t  Pr    Nu  

0.25 0.71 1 0.5140 

0.5 0.71 1 0.7791 

0.75 0.71 1 1.0153 

0.5 0.03 3 0.1987 
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0.5 1.5 5 1.6416 

Table 3 Sherwood number 

t  Sc  
1K  Sh  

0.25 0.22 0.2 0.2690 
0.5 0.22 0.2 0.3865 
0.75 0.22 0.2 0.4809 
0.5 0.78 2 0.9190 
0.5 2 5 0.5994 

6. Conclusions 

MHD free convection flow of a thermally conducting, chemically reacting and rotating fluid 

over a vertical plate due to moving free-stream with Hall and ion-slip currents is mathematically 

discussed. Laplace transform technique is successfully employed to get the solution of resulting 

PDE’s. To analyze the specific flow patterns numerical computation is performed and results are 

thoroughly discussed with the help of graphs and tables. Some significant out-comes are as 

follows: 

(i) Hall and ion-slip currents have tendency to suppress the primary flow in the 

neighboring boundary layer region of the plate while this tendency is upturned near the 

free-stream.  

(ii) Thermal and concentration buoyancy forces tend to raise primary flow. Reverse flow 

induces in the secondary flow direction. On rising the buoyancy forces secondary flow 

fall down in the boundary layer region adjacent to the plate while this tendency is 

upturned in the boundary layer region adjacent to the free-stream.  

(iii) A remarkable observation recorded that in the absence of thermal buoyancy force there 

appears reverse flow in the secondary flow direction while in the absence of 

concentration buoyancy force there does not exist reverse flow in the secondary flow 

direction. 

(iv) Thermal diffusion tends to rise fluid temperature while mass diffusion tends to raise 

concentration.  

(v) Thermal diffusion has tendency to raise thermal boundary layer thickness. Mass 

diffusion has also similar nature on concentration boundary layer thickness. 

The other results discussed in the previous section are also revealing and may find 

applications in fluid engineering and biomagnetic fluid dynamics.  
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