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Abstract 

The present article addresses the peristaltic flow of a Jeffery fluid over an inclined axisymmetric 

porous tube with varying viscosity and thermal conductivity. Velocity slip and convective 

boundary conditions are considered. Resulting governing equations are solved using long 

wavelength and small Reynolds number approximations. The closed-form solutions are obtained 

for velocity, streamline, pressure gradient, temperature, pressure rise, and frictional force.  The 

MATLAB numerical simulations are utilized to compute pressure rise and frictional force. The 

impacts of various physical parameters in the interims for time-averaged flow rate Q  with pressure 

rise 0P    and 0P    is examined.  The consequences of sinusoidal, multi-sinusoidal, 

triangular, trapezoidal, and square waveforms on physiological parameters are analyzed and 

discussed through graphs.  The analysis reveals that the presence of variable viscosity helps in 

controlling the pumping performance of the fluid.  

Keywords: Convective conditions; Darcy number; Inclination; Porous tube; Viscosity; Thermal 

conductivity 

1. Introduction 

The peristaltic flow is a vital mechanism prompted by the progressive wave of area 

compression and expansion, which goes along with the walls of the distensible tube or channel. 

The peristalsis occurs typically in the development of the bolus through the esophagus, urine flow 

https://www.researchgate.net/publication/262419923_Peristaltic_flow_of_Johnson-Segalman_fluid_in_asymmetric_channel_with_convective_boundary_conditions?_iepl%5BgeneralViewId%5D=wjVD7Or6Gf6cHzWQ9EHwQq4VHuhQ7l0gKZ6d&_iepl%5Bcontexts%5D%5B0%5D=searchReact&_iepl%5BviewId%5D=dvYhXm31R2CEPtFAd9S39IM2YkE7nLWpX4Wi&_iepl%5BsearchType%5D=publication&_iepl%5Bdata%5D%5BcountLessEqual20%5D=1&_iepl%5Bdata%5D%5BinteractedWithPosition1%5D=1&_iepl%5Bdata%5D%5BwithoutEnrichment%5D=1&_iepl%5Bposition%5D=1&_iepl%5BrgKey%5D=PB%3A262419923&_iepl%5BtargetEntityId%5D=PB%3A262419923&_iepl%5BinteractionType%5D=publicationTitle
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through the ureter, chyme advancement in the gastrointestinal tract, embryo transport inside the 

uterine cavity, and the vasomotion of blood in vessels. The researchers have utilized this 

mechanism to outline a few modern applications, for example, in the nuclear industry, peristaltic 

pump, roller and finger pumps, transport of destructive and harmful fluids and heart-lung machines. 

Because of its extensive use in different fields of science, various researchers have investigated 

the peristaltic transport under a different configuration. Since the greater part of the liquids 

occurring in industries and physiology behave as a non-Newtonian liquid. Therefore, the 

examination of the peristaltic transport of non-Newtonian fluid has been of most outrageous 

centrality to various researchers because of its application in Bioengineering and Medicine 

(Ramesh and Devakar, 2015; Santosh et al., 2015; Vajravelu et al., 2016; Manjunatha and 

Rajashekhar, 2018; Rajashekhar et al., 2018). Among the few non-Newtonian models, the Jeffery 

model is precious because of its vast number of applications in the warm oil recuperation, polymer 

and sustenance preparing, nourishment and sluttery transportation and the vasomotion of veins. 

The attempts on the use of the Jeffery model to examine the fluid flow with different configurations 

can be seen in the literature (Vajravelu et al., 2011, 2014; Sreenadh et al., 2016; Kavitha et al., 

2017).   

The impact of heat transfer on peristalsis is one of the essential components which has been 

of extraordinary significance in current circumstances because of its applications in the 

examination of oxygenation, hemodialysis, and tissues. The variation of temperature 

fundamentally influences thermal conductivity. Specifically, thermal conductivity is a measure of 

the limit of a substance to direct heat under typical conditions. This behavior proves that any 

change in temperature may change the rate at which the material is directing heat. Another 

fundamental factor that is generously affected by the variation of temperature is convective heat 

transfer at the boundary. Convective boundary conditions are used to portray a direct convective 

heat exchange for at least one geometric substance in thermal mode. The examination of the effects 

of convective boundary conditions assumes a critical part in gas turbines, nuclear plants, and 

thermal energy storage. Keeping this in mind, Ezzat (1994) examined the unsteady two-

dimensional flow with convective boundary conditions through a porous medium. Ezzat and El-

Bary (2012) investigated the MHD convectional flow with fractional heat conduction law. Later 

on, Alsaedi et al. (2013) used convective conditions on the peristaltic flow and also examined the 

effect of Joule heating. They found that the presence of Joule heating enhances the temperature, 

and an increase in the estimation of Biot number decreases the temperature. Hayat et al. (2016) 

extended the work of Alsaedi et al. (2013) by taking Carreau fluid. Further, Sayed et al. (2016) 

examined the impact of slip and convective boundary conditions on peristaltic transport. Recently, 

many authors modeled the classical and biological fluid flows by using convective conditions 

(Srinivas, 2017; Maleque, 2017; Prasad et al., 2018; Mishra et al., 2018; Manjunatha et al., 2019 

(a), 2019(b)). 

Most of the above studies analyzed the Newtonian/non-Newtonian characteristics of fluid 

flow by taking constant thermophysical properties of the fluid. These properties may change 

concerning temperature variation, particularly the variable viscosity and thermal conductivity. For 

lubricating liquids, the rise in temperature and the heat generated by the inside friction significantly 

alters the physical properties of the liquid, and therefore these properties are no longer assumed to 
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be constant. The expansion in temperature prompts an extension in the transport phenomenon; thus 

the heat exchange at the walls is additionally influenced. The increase in temperature prompts an 

increment in the transport phenomenon; thus the heat exchange at the walls is furthermore altered. 

Consequently, to foresee the flow and heat exchange rates, it is essential to consider the 

variable liquid properties (Ezzat and Youssef, 2010; Hayat et al., 2014; Abbasi et al., 2015; 

Hussain et al., 2016; Vaidya et al., 2019 (a), 2019 (b), 2019 (c), 2019 (d)). Subsequently, the 

supposition of constant viscosity of the liquid neglects to clear up the peristaltic development 

engaged in the digestive system and the flow of blood in microvessels. In these organs, the 

viscosity of the liquid differs over the thickness of the channel (Hayat and Ali, 2008; Khan et al., 

2013; Lachiheb, 2016; Farroq et al., 2017).  

Driven by the above examinations, the present model investigates the impact of variable 

viscosity and thermal conductivity on the peristaltic stream of a Jeffery liquid in an inclined porous 

tube with partial slip and convective boundary conditions. The geometry includes the flow through 

porous media because of its application in bile pipe, filtration of liquids, the human lung, wood, 

gallbladder, limestone, sandstone, and in the vasomotion of blood in microvessels. In particular, 

the flow through porous arteries has been of most significance in examining cardiovascular 

sicknesses and has many industrial applications (Elshehawey and Husseny, 2000; Alsaedi et al., 

2014; Sreenadh et al., 2017). The closed-form solutions are obtained by considering the long 

wavelength and small Reynolds number approximations. Further, the impact of various 

physiological parameters on velocity, pressure gradient, stream function, pressure rise, frictional 

force, and temperature are plotted and examined through graphics.  

2. Mathematical Modelling and Closed-Form Solutions 

We consider a viscous incompressible fluid flow induced by the infinite sinusoidal wave 

trains moving with velocity c  along the walls of an inclined porous tube. The tube is axisymmetric 

and allows the choice of the cylindrical coordinate system ( , , )R Z . The viscosity and thermal 

conductivity are not constant but vary with respect to thickness and temperature, respectively. The 
r - axis is along the axial direction and z - axis is normal to the axial direction, as shown in Fig.1. 

The geometry of the tube surface is given by 

 
2

( , ) 1 sinh z t z ct





 
   

 
                                                                                                (1) 

where   is the amplitude ratio,  is the wavelength and t  is time. 
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 Fig. 1  Geometrical representation of a peristaltic wave in a porous tube. 

The governing equation for an incompressible Jeffery fluid are 

T pI S   

2

11
S


  



  
  

  
                                                                                         (2) 

where, S is the extra tensor, T  is the Cauchy’s stress tensor, 1 is the ratio of relaxation to 

retardation time, 2 is the retardation time, I  is the identity tensor and   is the shear rate.  

The flow becomes steady in the wave frame ( , , )r z  moving with velocity c  away from the 

fixed frame  , ,R Z  given by 

 
2

, - , - , (Z, t)
2

R
r R z Z ct p z P                                                                         (3) 

where p and P  are pressures,   and  are stream functions in the wave and fixed frames of 

references, respectively. Utilizing the following non-dimensional quantities, 

2 2
0

0 0 0

0 0
1 2

0 0 0
0

, , , , , Pr , ,Pr , ,

( )
Re , , ( ) , , , , .

p

p

cr z ct pa b u c
r z t p Br Ec u Ec

a c a c k c T

c T Tca r w a
F r w

cga c T

a




  

  
   

   


        


      

 
 
 

            (4) 

The non-dimensional equations of motion and energy in the wave frame of reference, moving with 

speed c, under the lubrication approach is as follows: 

1
Re ( ) ( )rz zz

p
u w w r

r z z r r r
   

     
     

     
                                                           (5) 
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3 2Re ( ) ( )rr rz

p
u w u r

r z r r r r


   

     
     

     
                                                   (6) 

2

2 2
2

2 2

Re Pr Pr

1

rr rz zr zz

u w u w
u w Ec

r z r r r r

r r r z

        

  


        
       

        

  
  
  

                             (7) 

where w  and u are the axial and radial velocities,  is the temperature, Re  is the Reynolds 

number,   is the wavenumber, Pr is the Prandtl number, Ec  is the Eckert number, Br is 

Brinkman number, r is the radial coordinate and  is the shear stress.  

The variation in viscosity and thermal conductivity is defined as 

1 1( ) 1 , ( ) 1 , for 1 and 1,r r k                                                           (8) 

where  1 and   are the viscosity and thermal conductivity coefficients respectively.  

Under the assumption of long wavelength and small Reynolds number Eqs. (5) – (7) takes 

the form as 

1 1

1 sin

1

r w p

r r r z F

 



    
     

     
                                                                                     (9) 

0
p

r





                                                                                                                       (10) 

1

1

1

w w
r Br

r r r r r

 



        
                 

                                                                        (11) 

The corresponding non-dimensional slip and convective boundary conditions are (Abbasi et 

al., 2013; Saffman, 1971)  

1 , (1 ) 0 at
Da w

w Bi r h
r r


 



 
      

 
                                                            (12) 

0, is finite at 0rz r
r





 


                                                                                                (13) 

For small permeability, the boundary condition proposed by Beavers and Joseph (1961) was 

simplified by Saffman (1971) and is given in Eq. (12). Physically, this slip corresponds to the fact 

that there will be no momentum transfer from the fluid layer to the porous layer. Since the porous 

layer is completely saturated, the momentum instead of penetrating into a porous medium will be 

converted into a drag by w . This w  is the velocity of the fluid at the normal surface and is called 

the slip velocity ( ) at the nominal surface.   
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The exact solutions are obtained for the velocity expression (9) and (10) satisfying the 

boundary conditions (12) and (13), we obtain the velocity expression as 

      

 

2
1 1 1

2 2

1 1 1 1 1

1 log 1 log 1
1

2 1

P f r h r h h Da
w

h

  

     

    
      

 
          (14) 

Where 
1

sin 
and .

p
P f

z F


  


 

An expression for temperature is obtained by solving equation (11) with the boundary 

conditions (12) and (13),   

   
2 4

1 3
1 1

16 4 4

Br P f r h
h

Bi

 


    
    

  
                                                           (15) 

The instantaneous volumetric flow rate in the wave frame is given by 

0

2

h

Q wr dr                                                                  (16) 

  

 

 2 3 4
1 1

3 2 3

1 1 1 1 1 1

1 log 13 1
1

1 2 4 12 6 2

P f hh h h h Da
Q h

h

 

      

     
                

           (17) 

The dimensionless time-averaged flux Q  across one wavelength is 

1 1 2
2

0 0 0

( 1) 1
2

h

Q r w drdz q h dz q


                                                                                (18) 

The non-dimensional expression for pressure rise ( P ) and frictional force F  across one 

wavelength is given as follows: 

1

0

p
P dz

z


 


                                                                                                            (19) 

1

2

0

p
F h dz

z

 
  

 
                                                                                                             (20) 

3. Expressions for different waveforms 

The non-dimensional expressions for sinusoidal, multi-sinusoidal, triangular, square, and 

trapezoidal waveforms are as follows: 

Sinusoidal wave: 
2

( , ) 1 sin ( )h z t z t





 
   

 
                                                           (21) 
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Multi-Sinusoidal wave: 
2

( , ) 1 sin ( )
n

h z t z t





 
   

 
                                                      (22) 

Triangular wave:  
1

3 21

8 ( 1)
( , ) 1 sin (2 1)2 ( )

(2 1)

n

n
h z t n z t

n
 








 
    

 
                         (23) 

Square wave:  
1

1

4 ( 1)
( , ) 1 cos (2 1)2 ( )

(2 1)

n

n
h z t n z t

n
 








 
    

 
                                (24) 

Trapezoidal wave:  2 21

sin (2 1)
32 8( , ) 1 sin (2 1)2 ( )

(2 1)n

n

h z t n z t
n



 






 
 

    
 

 

              (25) 

4. Results and Discussion 

The Eqs. (19) and (20) are numerically integrated by using Weddle’s rule in MATLAB. The 

influence of variable viscosity 1( ) , Jeffery parameter 1( ) , porous parameter ( )Da , slip 

parameter ( ) , angle of inclination ( ) , amplitude ratio ( ) , variable thermal conductivity ( ) , 

Biot number ( )Bi  and Brinkmann number ( )Br  on velocity ( )w , temperature ( ) , pressure rise 

( )P , frictional force ( )F , pressure gradient ( )P , time-averaged flow rate ( )Q  and streamlines 

( )  are investigated and analyzed through graphs (Figs. 2-11) for the fixed value of 

1 1 10.1, 0.2, 0.2, 0.1, , 0.1, 0.01, 0.5, 0.02, 0.1, 0.6,
4

F t Da z Q


               

0.25 and 0.5.Br Bi   Further, the  quantitative analysis has been done for Q   where 0P   

and 0P   are presented in Tab. I. 

4.1 Velocity Field 

Fig. 2 illustrates the effects of 1, , andDa    on velocity (w) . It is observed that the 

velocity profiles are parabolic in nature with maximum velocity occurs at the center of the tube. 

Figs. 3(a)-(c) are plotted to examine the effects of 1, andDa   on velocity. An increase in the 

value of 1, andDa   enhances the velocity. The influence of  on velocity shows the opposite 

behavior as that of 1, andDa   (Fig. 3(d)). However, in all cases, the presence of variable 

viscosity plays a vital role in enhancing the velocity. 

4.2 Temperature distribution 

The behavior of 1, , , andDa Bi Br   on   are demonstrated in Fig. 3.  The temperature profiles 

are non-parabolic and show the dual nature. Fig. 3(a) is graphed to investigate the effect of 1  on 

temperature. An increment 1  diminishes the temperature. Fig. 3(b) is sketched to show the 
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variation of Da  on temperature. Here decay in temperature near the axis is due to the higher values 

of Da  and the opposite behavior is noticed near the walls of the tube. The effect of   on 

temperature is analyzed in Fig. 3(c). Here temperature near the axis of the tube increases for higher 

values of   and the effect is negligible near the walls. It is because of the reason that the higher 

value of   allows the liquid to dissipate or absorb heat to its surroundings. Hence, the temperature 

decreases near the walls of the tube. The effect of Bi  on temperature is portrayed in Fig. 3(d). 

Results indicate that temperature profile is a decreasing function of Bi . Fig. 3(e) elucidates the 

effect of Br  on temperature. With an increment in  ( Pr)Br Ec  the resulting temperature 

enhances. It is because of the viscous dissipation effects present in Ec helps in enhancing the 

temperature profile. Further, the larger value of  Pr  diminishes the thermal conductivity and 

thereby it enhances the temperature profile. 

 

 

Fig. 2 w  versus r  for varying (a) Jeffery parameter 1( ) , (b) porous parameter ( )Da , (c) angle 

of inclination ( )  and (d) velocity slip parameter ( ) . 
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Fig. 3    versus r  for varying  (a) Jeffery parameter 1( ) ,  (b) porous parameter ( )Da , (c) 

thermal conductivity ( ) ,  (d) Biot number ( )Bi  and (e) Brinkmann number ( )Br . 
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Fig. 4  P  versus Q  for varying  (a) Jeffery parameter 1( ) ,  (b) porous parameter ( )Da , (c) 

velocity slip parameter ( ) , (d) angle of inclination ( ) ,  (e) amplitude ratio ( )  and (f) different 

wave forms. 
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Fig. 5  F  versus Q  for varying  (a) Jeffery parameter 1( ) ,  (b) porous parameter ( )Da , (c) 

velocity slip parameter ( )  and  (d) angle of inclination ( ) . 

4.3 Pumping Characteristics 

In the study of peristalsis, pressure rise per wavelength plays a significant role in 

understanding the physiological behavior of biofluids. This section investigates the influence of 

variable viscosity and different physiological parameters on pressure rise, friction force, and 

pressure gradient. The influence of various physiological parameters on pressure rise and the time-

averaged flow rate is displayed in Fig.4.  It is known that the behavior of many physical parameters 

is strongly influenced by the range of  Q .  Specifically, the impact of physiological parameters 

shows the opposite behavior before and after a certain critical value of Q . Fig. 4(a) portrays the 

variation of 1  on P and Q . Here 1  significantly enhances the P  in the pumping region 

( 0)P   and the corresponding P  in the augmented region ( 0)P   diminishes. The 

pumping profiles for Jeffery fluid 1( 0)   and Newtonian fluid 1( 0)   intersect with each other 

when 1.1Q  . This information helps in equalizing the pumping rate of Newtonian and Jeffery 
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fluid for some value of Q  by adjusting the peristalsis velocity. Fig. 4(b) illustrates the variation of  

Da  on P and Q . An increment in Da  results in the reduction of P . This is because of an 

increase in the value of Da  increases the porosity of the wall and thus Q  decreases. Influence of 

  on P  and Q  are shown in Fig. 4(c). Results indicate that the larger value of  enhances P  

in the pumping region. Fig. 4(d) reveals that the pressure rise needed for a normal tube ( 0)   is 

less than that of the tube having an angle of inclination. Effect of   on P  and Q  shows that an 

increase in the value of   increases P  in a porous tube (See Fig. 4(e)). This is quite physical as 

the value of    increases, the corresponding wave height also increases, and thereby, it increases 

the value of P .  Fig. 4(f) is drawn to show the effects of different waveforms such as sinusoidal, 

multi-sinusoidal, square, trapezoidal and triangular waves on P and Q . Results indicate that the 

required value of P  is more for the square wave and it is less for the triangular waves when 

compared with other waveforms. Furthermore, the effects of 1, , andDa    on F  and Q show 

the opposite behavior as that of P  and Q  (Fig. 5). To discuss these effects quantitatively the 

intervals for Q   where 0P   and 0P   are presented in Tab. I. We observe that an increase in 

the value of 1, andDa  increases the length of the interval in the pumping region and opposite 

behavior is observed in the augmented region. Also, for a fixed value of 1, andDa  , the length 

of the pumping region increases in the case of variable viscosity with that of constant viscosity. 

Further, the effects of and  decrease the length of the interval for 0P    and opposite 

behaviour is observed when viscosity increases from 0 to 0.1. Fig. 6 is graphed to investigate the 

influence of 1, , andDa    on P . Here the greatest value of P  is observed at the narrowest 

part of the tube ( 0.85z  ). Further, the positive value of P an adverse pressure gradient is 

registered (which opposes the flow) in the range [0.7, 1]z . However, a favorable pressure 

gradient is seen when P  is negative in the interval  [0.5, 0.7]z  and [1, 1.2]z  which helps the 

fluid to flow. Figs. 6(a)-(c) are sketched to show the behavior of 1, andDa   on P . Here decay 

in the value of P  is subject to increasing values of 1, andDa  . Further, the opposite behavior 

is noticed for larger values of   (Fig. 6(d)). Fig. 7 is plotted to examine the behavior of different 

waveforms on the pressure gradient. Results show that the value of P is more for square wave and 

it is found to be less for triangular wave. 

4.4 Trapping phenomenon 

The essential part of peristalsis is trapping. It is by and large the arrangement of the inside 

flowing bolus. The movement of the inside flowing bolus in a fluid is implanted by a different 

stream, which is named as trapping phenomenon. This phenomenon is particularly useful in the 

movement of thrombus and transport of food bolus in the gastrointestinal tract. Fig. 8 illustrates 

the effect of Da  on trapped bolus. It is noticed that an increase in the value of Da  enhances the 

size of the trapped bolus, and hence, it vanishes for a large value of the porous parameter. Whereas, 

it diminishes for a larger value of and   and thereby increases the number of boluses (Fig. 9 
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and 10). Fig. 11 demonstrates the impacts of different waveforms on trapped bolus. It is observed 

that the size of the trapped bolus is small in the case of a triangular wave than the other considered 

waveforms. 

Table 1: Interval for time-averaged flow rate Q across one wavelength for different values of the 

physical parameters when 1 0.1 and 0.01.F t   

  Da      1  1 0   1 0.1   

0P   0P   0P   0P   

0.2 0.02 0.5 4
  

0 0 2.022Q   2.022 3Q   0 2.179Q   2.179 3Q   

0.2 0 2.201Q   2.201 3Q   0 2.275Q   2.275 3Q   

0.4 0 2.380Q   2.380 3Q   0 2.458Q   2.458 3Q   

0.6 0 2.559Q   2.559 3Q   0 2.648Q   2.648 3Q   

0.2 0.02 0.5 

0 

0.3 

0 1.126Q   1.126 3Q   0 1.126Q   1.126 3Q   

12
  0 1.552Q   1.552 3Q   0 1.578Q   1.578 3Q   

8
  0 1.756Q   1.756 3Q   0 1.795Q   1.795 3Q   

4
  0 2.291Q   2.291 3Q   0 2.362Q   2.362 3Q   

0.2 0.02 

0.5 

4
  0.3 

0 2.291Q   2.291 3Q   0 2.362Q   2.362 3Q   

0.6 0 1.773Q   1.773 3Q   0 1.802Q   1.802 3Q   

0.7 0 1.478Q   1.478 3Q   0 1.487Q   1.487 3Q   

0.8 0 1.378Q   1.378 3Q   0 1.379Q   1.379 3Q   

0.2 

0 

0.5 4
  0.2 

0 1.430Q   1.430 3Q   0 1.446Q   1.446 3Q   

0.02 0 2.291Q   2.291 3Q   0 2.362Q   2.362 3Q   

0.04 0 2.647Q   2.647 3Q   0 2.742Q   2.742 3Q   

0.2 

0.02 0.5 4
  0.3 

0 2.291Q   2.291 3Q   0 2.362Q   2.362 3Q   

0.3 0 2.004Q   2.004 3Q   0 2.057Q   2.057 3Q   

0.4 0 1.860Q   1.860 3Q   0 1.904Q   1.904 3Q   
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Fig. 6 P  versus z  for varying  (a) Jeffery parameter 1( ) ,  (b) porous parameter ( )Da , (c)angle 

of inclination ( )  and  (d) velocity slip parameter ( ) . 

 

Fig. 7 P  versus z  for different waveforms (a) Sinusoidal, (b) Square, (c) Trapezoidal and (d) 

Triangular. 
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Fig. 8  Streamlines for varying (a) 0Da  , (b) 0.01Da  , (c) 0.02Da   and (d) 0.03Da  . 

 

Fig. 9  Streamlines for varying (a) 0.1  , (b) 0.2  , (c) 0.3   and (d) 0.4  . 
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Fig. 10  Streamlines for varying (a) 0.3  , (b) 0.4  , (c) 0.5   and (d) 0.6  . 

 

Fig. 11  Streamlines for different wave forms (a) Sinusoidal, (b) Square, (c) Trapezoidal and (d) 

Triangular. 
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5. Conclusions 

The main findings are as follows: 

 The axial velocity field is an increasing function of 1, andDa   while it reduces for  . 

 The magnitude of temperature decreases for higher Bi . 

 There is an increase in temperature near the axis for higher  . 

  Pumping performance increases for   and it decreases for 1 and  . 

 Variable viscosity plays a significant role in controlling pressure rise and temperature. 

 The size of trapped bolus increases for Da  and it reduces for  . 
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