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Abstract 

This paper addresses a new finite strip method for the analysis of simultaneous heat conduction 

and thermal radiation in a planar slab with diffuse surfaces and filled with an absorbing and 

emitting material considered as a gray medium. The gray material is discretized into a finite 

number of strips where the temperature is approximated with quadratic expansions in local 

coordinates whose coefficients are unknowns inside each strip. The finite strip method consists 

in a set of discrete equations corresponding to energy balance equations united to the 

compatibility conditions of both temperature and heat flux between consecutive strips. The gray 

material is articulated with different combinations of thermal and optical properties. Numerical 

results for the temperature fields and the conductive, radiative and total heat fluxes are presented 

in graphical and tabular forms and they compared favorably with equivalent results employing 

standard calculation techniques. The three main features attributable to the finite strip method are 

simplicity, quick calculation, good convergence and quality results.  

Keywords: simultaneous heat conduction and thermal radiation, planar slab, diffuse surfaces, 

absorbing-emitting gray material, new finite strip methodology. 

1. Introduction  

The combination of heat conduction and thermal radiation mechanisms is normally 

encountered in semitransparent materials as cited in the textbooks by Howell et al. (2011) and 

Modest (2013). Practical engineering applications of semitransparent solids, such as industrial 
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furnaces, glass manufacturing, fiber and foam insulations, high performance windows, solar 

collectors have been reported in publications  by Viskanta and Anderson (1975) and Campo et al. 

(1986,1987).  

Nomenclature  

d  thickness of a typical finite strip   optical coordinate 

D thickness of the planar slab   cosine of radiation direction  

En   exponential integral function, eq. 

(5) 

Θ non-dimensional temperature,  Θ =T/T1  

i  total intensity   Stefan-Boltzmann constant 

K  extinction coefficient   equation in the system of nonlinear 

algebraic equations 

KD optical  thickness   non-dimensional total heat flux, 
4 ( )refq T   

L  total number of finite strips  

N conduction-radiation parameter Subscripts 
q  heat flux b blackbody 

T temperature and temperature 

coefficient 

c conduction 

dT/dx temperature gradient r radiation 

x  Cartesian coordinate t  total = conduction plus radiation 

x  local coordinate at the mid-plane 

of a strip 

n order of the exponential integral function En 

 , ,i j   indices 

Greek symbols m  iterative step 

  typical finite strip  

βc thermal conductivity Superscripts 

  Kronecker delta function   refers to forward direction  

  surface emissivity   ̶̶̶     refers to backward direction 
  refractive index * optical coordinate for integration 

Several theoretical and numerical studies exist for the prediction of the total heat transfer by 

simultaneous conduction and radiation in gray materials; that is materials with extinction 

coefficient independent of wavelength. As noted by Mishra et al. (2006), theoretical models for 

the quantification of radiation heat transfer have been recognized as computationally intensive 

and time consuming. These features are attributed to the difficulty and high processing cost 

involving the radiation mechanism, which are due to the integro-differential nature of the 

governing energy equations (Howell et al. (2011) and Modest (2013). However, reasonable 

efforts have been directed in the past to reduce the processing time by developing new models 

and enhancing the computational procedures of the existing models. Representative publications 

on these efforts are those by Mishra et al. (2004), Anteby et al. (2000), Ratzell III and Howell 
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(1982). A pioneering theoretical formulation for radiation heat transfer in a planar slab was 

developed by Viskanta and Grosh (1962a). These authors generated a rigorous solution for the 

case of one-dimensional gray medium by way of a complex procedure that transforms the 

integro-differential energy equation into a nonlinear integral energy equation. The nonlinear 

integral equation was solved by an iterative procedure. The authors also extended their 

formulation to investigate the effects of boundary emissivities on radiation heat transfer in a gray 

medium (Viskanta and Grosh, 1962b). More recently, the discrete transfer method (Shah, 1979) 

and the collapsed dimension method (Mishra, 1997) have been implemented to address the same 

problem. Afterwards, a comparative study between the two methods was carried out in Talukdar 

and Mishra (2002). The emerging results are in very good agreement with those published by 

Viskanta and Grosh (1962a,b). However, an inevitable drawback was that the number of 

iterations required for sub-problems dominated by radiation is very large.  According to Talukdar 

and Mishra (2002), for sub-problems dictated by conduction-radiation parameters N smaller or 

equal to 0.01 an under relaxation technique is mandatory to attain satisfactory convergence. 

For a particular case of transparent materials, Dai and Fang (2014) used the thermal 

response factor method developed by Mitalas (1968) to estimate the heat transmission in bodies. 

In fact, the peculiarity of this work is that the absorbed solar radiation was treated as an internal 

source term in the descriptive energy equation. 

The objective of the present work revolves around the application of a new finite strip 

method for the heat transfer analysis by simultaneous heat conduction and thermal radiation in an 

absorbing and emitting gray material forming a planar slab. Further, convection heat transfer is 

ignored. The method in question consists of an iterative tangent nonlinear formulation in which 

the gray medium is discretized into a finite number of strips. Inside each finite strip, the 

temperature variation is approximated using quadratic expansions in local coordinates whose 

coefficients are the primary unknowns in the problem. The resulting discrete equations 

correspond to a collection of balance energy equations and compatibility conditions of 

temperature and heat flux between successive strips. Unquestionably, the main features inherent 

to the finite strip method are simplicity and quick convergence. For verification, the finite strip 

method is applied to a planar slab problem with different combinations of thermal and optical 

properties. Numerical results in terms of temperature fields as well as conductive, radiative and 

total heat fluxes are presented in graphical and tabulated forms. Besides, the relative importance 

of each heat transfer mode is elucidated. A detailed comparison of the numerical results with 

others obtained by well established theoretical models demonstrates a good balance between 

accuracy and the number of iterations needed for convergence.    

2. Steady Conservation Equation of Energy 

A planar slab of thickness D made from a homogeneous, isotropic material is sketched in 

Figure 1. The material filling the planar slab is assumed to be gray, absorbing, emitting and non-

scattering. For simplicity, the material properties are considered independent of temperature. The 

bounding parallel surfaces 1 and 2 in the planar slab are idealized as opaque and diffuse and are 
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maintained at temperatures 1T  and 2 T . It is envisioned that heat transfer in the planar slab occurs 

by simultaneous heat conduction and thermal radiation. In addition, to avoid convection heat 

transfer, the planar slab is situated in a perfect vacuum. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1  Planar slab with two diffuse boundary surfaces housing an absorbing-emitting gray 

material. The left and right boundary surfaces are kept at temperatures T1 and T2 respectively.  

The one dimensional geometry is a good approximation for the energy transport in many 

physical situations, such as insulation, atmospheres and furnaces. Besides, the one dimensional 

geometry is also a building block for the preliminary analysis of more involved geometries 

dealing with two and three dimensions. 

Under steady-state conditions, the total heat flux tq  through the planar slab is constant. 

Thereby, the total heat flux tq  is quantified by the additive relation 

( ) ( )t c rq q x q x                                                                                                                     (1) 

where ( )cq x  is the conductive heat flux and ( )rq x is the radiative heat flux occurring at the point 

with coordinate x as illustrated in Figure 1. The conductive heat flux ( )cq x is obtained from 

Fourier’s ̶̶̶law ̶̶̶(Arpaci, 1966): 

( )c c

dT
q x

dx
                                                                                                                       (2) 

where βc is the thermal conductivity. Upon introducing the optical coordinate  Kx  , where K

is the material extinction coefficient, the radiative heat flux ( )rq x as given by Howell et al. (2011) 

and Modest (2013) is: 

1.0

2  1  

( )Di   
(0)i  

2T  1T  

D 

( , )i x   

  

x  
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2 * * *

3 3 2
0

2 * * *

2

( ) 2 [ (0) ( ) ( ) ( ) ( ) ( )

( ) ( ) ]
D

r D D b

b

 q i E i E i E d

         i E d







          

    

      

 




                              (3) 

In this equation, (0)i and ( )Di   represent the forward and backward total intensities at the 

bounding surfaces 1 and 2, respectively, D is the optical thickness and   is the refractive index 

of the gray material. Furthermore,   = cos , wherein   is the angle between the radiation 

direction and the x-axis as indicated in Figure 1. The blackbody total intensity bi  depends on the 

temperature T with the formula (Howell et al., 2011 and Modest, 2013). 

4

bi T



                                                                                                                               (4) 

where the Stefan-Boltzmann constant σ = 5.67×10-8 W/(m2K4). The quantities 2 ( )E  and 3( )E  in 

Eq. (3) emerge from the exponential integral function (Abramowitz and Stegun, 1965):  

1
2 /

0
( ) n

nE e d                                                                                                              (5) 

for n =  2 and n = 3.  

The total intensities (0)i and ( )Di   at the two bounding surfaces 1 and 2 can be evaluated by 

the pair of expressions 

2 2 * * *

1 ,1 1 3 2(0) 2(1 ) ( ) ( ) ( ) ( )
D

b D D b
o

i i i E i E d


              
                                      (6a) 

and 

2 2 * * *

2 ,2 2 3 2( ) 2(1 ) (0) ( ) ( ) ( )
D

D b D b D
o

i i i E i E d


                
                            (6b) 

where 1  and 2 denote the respective surface emissivity of bounding surfaces 1 and 2.  

Within the platform of simultaneous conduction-radiation heat transfer, the governing 

conservation equation of energy is taken from Howell et al. (2011) and Modest (2013): 

( ) 0c rT q                                                                                                                   (7) 

Using Eqs. (2) and (3), allows us to write Eq. (7) in the form of a nonlinear integro-

differential equation  

2
2 * * *

2 2 12 0

2 * * * 2

1

2 [ (0) ( ) ( ) ( ) ( ) ( )

( ) ( ) 2 ( )] 0
D

c D D b

b b

d T
K i E i E i E d

dx

i E d i







          

      

      

    





                         (8) 
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which is subject to the prescribed temperature boundary conditions 

1(0)T T  and 2 ( )T D T .                                                                                               (9) 

From a fundamental framework, the pair of Eqs. (8) and (9) constitutes a nonlinear and 

nonlocal problem. On one hand, the nonlinear part presents difficulties because the blackbody 

total intensity bi  depends on the temperature field T (x), which is not known a priori. On the 

other hand, the non-local part implies that the total heat flux tq  at a point x depends on both the 

temperature T (x) and the temperature gradient dT/dx. 

 

 
 
 
 
 
                       
                       
 
 
 
 
 
 
                                                (a)                                                 (b)                       

Fig.2  (a) Planar slab divided into L finite strips and (b) local coordinate system in a typical 

strip   shown in part (a). 

3. Numerical Computational Procedure: The New Finite Strip Method  

Owing that the central objective in the study is to produce manageable discrete equations, 

the planar slab is divided into a finite number of L strips, each with variable thickness d  

(1 )L  as shown in Figure 2.  Accordingly, a local coordinate ( )x  is assigned at the mid-

plane of each strip, so that ( )

2 2

d d
x     .  

The temperature T (x) at each strip is approximated by means of a quadratic expansion in 

the corresponding local coordinate x . Correspondingly, for a typical strip  , the temperature 

is given by the equation 

2
( ) ( ) 2 ( )

1 2

1
( ) 3

2 4
o

d
T x T xT x T  

 
    

 
                                                                              (10) 

D 

)(
cx  

strip

 

d  

)(x  

22

)(  d
x

d
  
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where ( ) oT  , ( )

1T   and ( )

2T   are the unknown temperature coefficients. It can be shown that: a) 
( )

oT  represents the mean temperature in the strip   and b) ( )

1cT
  is the conduction heat flux at 

the mid-plane of the strip  . Using this approximate temperature field, the energy equation (8) 

specialized at the mid-plane 0x )(   of the strip   can be channeled through the following 

expression 

( ) ( )
2 2

( ) ( )
1 1

( )
2

( )
1

( ) ( ) ( )

2 2 2

1
2 * ( ) * * 2 * ( ) * *

1 1

1

2 * * ( ) * 2 ( )

1

1

3 2 [ (0) ( ) ( ) ( )

 ( ) ( ) ( ) ( )

( ) ( ) 2 ( )] 0

c c D D c

b c b c

L

b c b c

T K i E i E

i E d i E d

i E d i

 

 





  



  
 

 



 


 

      

         

      

 





 

   

    

    

 

 

                                 (11) 

where ( )

c

  is the optical coordinate at the mid-plane of the strip. The partial derivatives of 

with respect to the unknown temperature coefficients ( ) ,  oT  ( )

1T  and ( )

2T   associated with the

strip   are represented by the following system of integro-partial differential equations 

     
( )
2

( )
1

( ) ( )

2 2( ) ( ) ( )

* ( )
2 ( ) * * 2

1

( )(0)
2 [ ( ) ( )

( ) ( )
 ( ) 2 ] 0

D
c D c

o o o

b b c
c

ii
K E E

T T T

i i
E d

T T





 

  









 
   

 
     

 
  

  

  
   

 

                                                (12) 

   
( )
2

( )
1

( ) ( )

2 2( ) ( ) ( )

1 1 1

* ( )
2 ( ) ( ) * * 2 ( )

1

( )(0)
2 [ ( ) ( )

( ) ( )
 ( ) 2 ] 0

D
c D c

b b c
c

ii
K E E

T T T

i i
x E d x

T T





 

  




  




 
   

 
     

 
  

  

  
   

 

                                    (13) 

                         

( )
2

( )
1

( ) ( )

2 2( ) ( ) ( )

2 2 2

2 2* ( )
2 ( )2 ( ) * * 2 ( )2

1

( )(0)
3 2 [ ( ) ( )

( ) ( )1
 (3 ) ( ) (3 )] 0

2 4 4

D
c c D c

b b c
c

ii
K E E

T T T

d di i
x E d x

T T





 
  


    




 
     

 
     

 
   

  

  
     

 

      (14) 

where   stands for the Kronecker delta function.  

Under the premises that the finite strips are thin, the blackbody total intensities bi  along 

with their derivatives in Eqs. (12)-(14) can be approximately evaluated in terms of the mean 

temperature  oT  in each strip. By way of this simplification, the exponential integral functions nE  
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over the optical coordinate can be evaluated explicitly. The integrals can be treated with different 

quadrature schemes, such as Gaussian, Lobatto, Chebyshev, and Newton-Cotes (Press et al., 

1986). The integrals in question are of the form 

1

( ) ( )
nb

j j
a

j

f d w f  


                                                                                                      (15) 

where wj are the weight coefficients corresponding to the n discrete points μj. The differences 

between the various quadrature schemes lie in the values of wj and μj.  Consider ( )f  to be a 

polynomial of degree m, having m +1 coefficients. For Gaussian quadrature, which contains the 2n 

weights and points to be arbitrary, the maximum value of m for which the summation is exact is m 

= 2n – 1. In this work, the precise four-point Gaussian quadrature scheme (Press et al., 1986) was 

implemented. 

Actually, the present model generates a system of L energy equations, wherein each 

equation is connected to a particular finite strip. It is important to add that the energy equations 

depend on the unknown temperature coefficients. As expected, additional equations have to be 

written to comply with the compatibility conditions of temperature and heat flux at the interfaces 

of adjacent finite strips. In equation form, these compatibility conditions are equivalent to: 

a) The temperature compatibility at the interface between two adjacent strips is 

( 1) ( )1

2 2

d d
T x T x      

      
   

                                                                                   (16a) 

2 2
( 1) ( 1) ( 1) ( ) ( ) ( )1 1

1 2 1 2
2 4 2 4

o o

d d d d
T T T T T T                                                                   (16b) 

b) The conduction heat flux compatibility at the interface between two adjacent strips is 

( 1) ( )1

2 2
c c

d d
q x q x

  


   
      

   
                                                                                  (17a)  

                                                                               (17b) 

Besides, the temperature boundary conditions at the bounding surfaces are 

2
(1) (1) (1)1 1

1 2 1
2 4

o

d d
T T T T                                                                                               (18a) 

2

)(

2

2
)(

1

)(

42
TT

d
T

d
T LLLLL

o                                                                                                (18b) 

Overall, a nonlinear system of algebraic equations consisting of 3L equations and 3L 

)(

2

)(

1

)1(

2
1)1(

1
2

3

2

3  T
d

TT
d

T  
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unknown temperature coefficients is formed by Eqs. (11), (16), (17) and (18). In general, the 

nonlinear system of algebraic equations can be written compactly as follows 

         𝜓𝑖(𝑇⃗ ) = 0                      (𝑖 = 1,2, … . .3𝐿)                                                                            (19) 

where 𝑇⃗  is the vector of temperature coefficients  

𝑇⃗ = {𝑇0
(1)

𝑇1
(1)

𝑇2
(1)

𝑇0
(2)

𝑇1
(2)

𝑇2
(2)

. . … 𝑇0
(𝐿)

𝑇1
(𝐿)

𝑇2
(𝐿)

}                                                             (20) 

An iterative solution procedure is implemented to solve the above system of algebraic 

equations. Applying the Taylor’s ̶̶̶ series ̶̶̶ expansion ̶̶̶ of ̶̶̶ i  to the vector 𝑇⃗ 𝑚  corresponding to a 

certain iteration m, a linearization technique leads to the equation 

  𝜓𝑖(𝑇⃗ 𝑚+1) ≈   𝜓𝑖(𝑇⃗ 𝑚) + (
𝜕𝜓𝑖

𝜕𝑇⃗ 
)
𝑇⃗ −𝑇⃗ 𝑚

×  𝛿𝑇⃗ 𝑚 = 0                                                                (21) 

After neglecting higher order terms. In this equation, (
𝜕𝜓𝑖

𝜕𝑇⃗ 
) represents the Jacobian matrix 

of the function i  and δ𝑇⃗ 𝑚  indicates the incremental vector of temperature coefficients defined 

by  

δ𝑇⃗ 𝑚 = 𝑇⃗ 𝑚+1 − 𝑇⃗ 𝑚                                                                                                            (22) 

Next, combining Eqs. (21) and (22), the unknown temperature coefficients Tm+1 are 

obtained iteratively using the equation 

𝑇⃗ 𝑚+1 = 𝑇⃗ 𝑚 − (
𝜕𝜓𝑖

𝜕𝑇⃗ 
)
𝑇⃗ −𝑇⃗ 𝑚

−1

×  𝜓𝑖(𝑇⃗ 𝑚) = 0                                                                        (23) 

Here, the iterative process begins by guessing an initial temperature field in the gray material 

occupying the planar slab, which is associated with the limiting condition of heat conduction.  

Convergence of the nonlinear system of algebraic equations in Eq. (19) is achieved when 

the Euclidean norm of the n-th increment of temperature normalized by the temperature is less 

than a pre-set tolerance. Then, the convergence criterion is given by the ratio 

‖𝛿𝑇⃗ 𝑚‖

|𝑇𝑚𝑎𝑥|
≤ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒                                                                                                             (24) 

where  represents the Euclidian norm and maxT  signifies the absolute value of the larger 

temperature between T1 and T2. The pre-set tolerance is usually set at 310 .  Excellent 

convergence patterns are obtained employing a relatively small number of iterations (normally, 

from two to six) in the algorithm. 
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4. Validation of the New Finite Strip Method  

The conduction-radiation parameter is defined by
34c refN K T  , where βc is the thermal 

conductivity, K is the extinction coefficient and 
refT  is a reference temperature. In this work, 

refT

has been taken as the largest temperature at the bounding surfaces, i.e., either T1 or T2. For high 

values of the conduction-radiation parameter N, heat conduction is the dominant mechanism, 

whereas for small values of N, thermal radiation is the dominant mechanism.  

For gray materials, the accuracy of the algorithm has to be demonstrated by comparing the 

computed results provided by the new finite strip method in terms of temperature and heat fluxes 

with comparable published results that are available in the heat transfer literature. 

For the computational domain, uniform meshes with 100, 150 and 200 finite strips are 

constructed. The number of iterations required for convergence usually varied between n = 2 and 

6, being the maximum value (n = 6) associated with the limiting case of pure radiation N = 0. An 

adequate tolerance with an error equal to 0.001 is imposed. As it can be seen in Figure 3, the 

non-dimensional temperature distributions are in excellent agreement with those published by 

Talukdar and Mishra (2002). It should be added that in the paper by these authors, the number of 

iterations required for gray materials having various conduction-radiation parameters  

0 1  0.01,  0 001 and 0.0001N . , .  amounts to 80, 120, 600 and 650, respectively. For those 

particular cases connected to very small conduction-radiation parameter, such as  0 01N . under 

relaxation was necessary.   

5. Presentation and Discussion of the Numerical Results 

Figure 3 displays the non-dimensional temperature distributions  Θ = T/T1 varying with the 

relative distance x/D for the case of a gray material owing an optical thickness  1D  , 

temperature ratio 2 1 0.5T T   coupled with four conduction-radiation parameter N = 0, 0.01, 0.1 

and 10 together with a high surface emissivity 1 0.  . With the exception of a high N = 10, the 

three non-dimensional temperature distributions exhibit a characteristic S-shape. For limiting 

pure radiation with N = 0 and weak radiation with N = 0.01 the two non-dimensional temperature 

distributions coincided with those obtained by Talukdar and Mishra (2002). For limiting pure 

radiation with N = 0, the non-dimensional temperature Θ at x/D = 1 attains a relatively high 

value of  0.75.  This behavior demonstrates a non-dimensional temperature jump from 0.5 to 

0.75. For weak radiation with N = 0.01 the non-dimensional temperature Θ at x/D = 1 attains the 

value of Θ = 0.50, that is the non-dimensional temperature of the right bounding surface.  For 

limiting pure conduction with a high N = 10, the non-dimensional temperature distribution shows 

the negative sloped straight line ending with Θ = 0.5 at x/D = 1.   
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Fig.3  Non-dimensional temperature distributions for an absorbing-emitting gray material  with  

optical  thickness  1D    and  surface emissivity  1    for  various conduction-radiation 

parameters N = 0. 0.01, 0.1 and 10. 

For the limiting case of pure radiation with N = 0, the non-dimensional temperature 

distributions in gray materials with temperature ratio 1 2 0.5T T  , different surface emissivity 

and optical thickness, are plotted in Figure. 4.  Notice that a different temperature ratio 

2 1 0.5T T   was used in Figure 3. To assess the goodness of the new strip model in describing the 

heat transfer phenomena for pure radiation with N = 0, the respective non-dimensionless 

temperature distributions are compared with those reported in the seminal work by Viskanta and 

Grosh (1962b). It is observable that for all optical thicknesses 𝜅𝐷  the results are of excellent 

quality. Specifically, the largest difference of about 2.6% corresponds to a high optical thickness 

 10D  .  

In Figure 4(a)  for  a  small optical thickness KD = 0.1 and surface emissivities ε = 0.1, 0.5 

and 1,   the non-dimensional temperatures in  the  gray material  remain  almost  constant from 

the left to the right bounding surfaces.  

In   Figure  4(b)   for   a   moderate   optical    thickness   KD = 1,    the    non-dimensional 

temperature   curve remains   constant  for  a  surface emissivities ε = 0.1,  and  switches to    

monotonic sloped for higher surface emissivities of ε =  0.5 and 1. The curve slopes increase  

gradually with increments in the surface emissivity ε. 

In  Figure 4(c)  for a large optical  thickness KD = 10,  the   non-dimensional   temperature  

curves exhibit   a   parabolic   behavior, which  is  accentuated with  increments in   the   surface 

01.0N  

0N  

10N  

1.0N  

Present model 

Talukdar et al. (2002) 
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emissivity going from ̶̶̶ε ̶̶̶= ̶̶̶0.1 ̶̶̶to ̶̶̶1. 

The non-dimensional heat flux is conveniently defined by the relation
4 ( )refq T  , where 

q  denotes heat flux. Non-dimensional heat fluxes computed by the present model for gray 

materials characterized with optical thickness  10D  , temperature ratio 2 1 0.5 T T  and 

different values of the conduction-radiation parameter N are portrayed in Figure. 5. Here again, 

the surface emissivity takes two extreme values  1.0 and  0.1   . In Figure 5, the conductive, 

radiative and total non-dimensional fluxes are represented by r t ,    and  c   , respectively. A 

variety of straight lines, concave lines and convex lines are observed in the figure. For the 

extreme case dealing with pure radiation (N = 0), the maximum number of iterations needed for 

convergence was 5.  On the contrary, for dominant conduction  (N =10), only 2 iterations were 

needed to achieve satisfactory convergence. Again, to maintain uniformity, a tolerance of 0.001 

was pre-set in advance. 
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Fig. 4  Non-dimensional temperature distributions in an absorbing-emitting gray material for 

limiting pure radiation N = 0 and optical thicknesses KD = 0.1, 1 and 10 combined with surface 

emissivities ̶̶̶ε ̶̶̶= ̶̶̶0.1, ̶̶̶0.5 ̶̶̶and ̶̶̶1. 
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Fig.5  Non-dimensional total heat flux distributions for conduction-radiation parameters  N = 0.1, 

1 ̶̶̶ ̶̶̶and ̶̶̶10 ̶̶̶coupled ̶̶̶ ̶̶̶with ̶̶̶ ̶̶̶ ̶̶̶ ̶̶̶surface ̶̶̶ ̶̶̶emissivities ̶̶̶ε ̶̶̶= ̶̶̶0.1 ̶̶̶and ̶̶̶1. 

The numerically-obtained non-dimensional total fluxes ζt are listed in Tables 1 and 2. It is 

observable that the numbers compared favorably with those reported in the seminal publication 

by Viskanta and Grosh (1962b).  

Table 1  Non-dimensional total heat fluxes ζt for various optical thicknesses D , temperature 

ratios T1/T2 and conduction-radiation parameters N under the influence of very high surface  

emissivities:   0.121   . 

D  21 /TT  N                          ζt 

Present study Viskanta and 

Grosh (1962b) 

0.1 0.5 0 0.858 0.859 

  0.01 1.079 1.074 

  0.1 2.876 2.88 

  1.0 20.846 20.88 

  10     200.540 200.88 

     

1.0 0.1 0 0.559 0.556 

   0.01 0.631 0.658 

  0.1 0.968 0.991 

  1.0 4.192 4.218 

  10.0 36.546 36.60 

     

1.0 0.5 0 0.519 0.518 

  0.01 0.567 0.596 

  0.1 0.769 0.798 

  1.0 2.570 2.60 

  10.0 20.54 20.60 
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10.0 0.5 0 0.109 0.102 

  0.01 0.113 0.114 

  0.1 

1.0 

10.0 

0.133 

0.315 

2.111 

0.131 

0.315 

2.114 
 

 Table 2  Non-dimensional total heat fluxes ζt for various optical thicknesses D , temperature 

ratios T1/T2 and conduction-radiation parameters N under the influence of very low surface 

emissivities: 1 2 0.1   . 

D  21 /TT  N ζt 

Present study Viskanta and 

Grosh (1962b)  

0.1 0.5 0 0.0491 0.049 

  0.01 0.277 0.267 

  0.1 2.074 2.078 

  1.0        20.044         20.08 

  10.0   200.00 200.08 

     

1.0 0.1 0 0.061 0.051 

   0.01 0.198 0.22 

  0.1 0.570 0.591 

  1.0 3.809 3.752 

  10.0 36.15 36.22 

     

1.0 0.5 0 0.0476 0.047 

  0.01 0.157 0.156 

  0.1 0.402 0.393 

  1.0 2.219 2.245 

  10.0 20.19 20.25 

     

10.0 0.5 0 0.036 0.036 

  0.01 0.0874 0.090 

0.1 

1.0           

10.0 

0.114 

0.304 

2.102 

0.115 

0.297 

2.107  

6. Conclusions  

A new computational method, called the finite strip method is developed in this work 

dealing with the heat transfer analysis of simultaneous heat conduction and thermal radiation in 
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an absorbing and emitting gray material filling a planar slab. The finite strip method seeks to 

transform the integro partial differential equation of energy into a nonlinear system of algebraic 

equations. The computational efficiency of the finite strip method is verified through a series of 

critical tests utilizing gray materials accounting for a wide variety of thermal properties and 

optical properties, such as the conduction-radiation parameter N, the surface emissivity   and 

the optical thickness D .  

Comparisons of the computed non-dimensional temperatures Θ and the non-dimensional 

heat fluxes ζt with their counterparts from reliable publications in the heat transfer literature 

demonstrate that the finite strip method is capable of delivering results of superb accuracy for 

engineering applications. Of equal importance, the finite strip method necessitates a lesser 

number of iterations, small CPU times and remarkable convergence when compared against the 

standard numerical methods, such as finite differences and finite elements. Surely, these are 

unique features attributed to the finite strip method. 

Acknowledgements 

The first author (SPCM) gratefully acknowledges the financial support provided by the Brazilian 
Federal Agency, CNPq.  

References  

Abramowitz, M. and Stegun, A. (editors) (1965), Handbook of Mathematical Functions, Dover, New 

York, NY. 

Anteby, I., Shai, I. and Arbel A. (2000), Numerical calculations for combined conduction and radiation 

heat transfer in a semitransparent medium, Numerical Heat Transfer, Part A: Fundamentals, Vol. 37, 

pp. 359-371. 

Arpaci, V. (1966), Conduction Heat Transfer, Addison–Wesley, Reading, MA. 

Campo, A.,  Malpica, F.  and  Tremante, A.  (1986),  Contribution of thermal radiation  to  the temperature 

profiles of semi–transparent materials,  High Temperature–High Pressure, Vol. 18, pp. 35-41. 

Campo, A.  and Tremante, A. (1987),  Analysis  of  conduction–radiation heat transfer  in planar media  

using a two–flux model,  Wärme–und Stoffübertragung (Germany), Vol. 21, pp. 221–232. 

Dai and Fang (2014), An approach to calculate transient heat flow through transparent materials, 

American Journal of Heat and Mass Transfer, Vol. 1, No. 1, pp. 30-37. 

Howell, J. R., Siegel, R. and Mengüç, M. P., (2011), Thermal Radiation Heat Transfer, 5nd Edition, CRC 

Press, Boca Raton, FL.  

Mishra, S. C. (1997), A novel computational approach for the solution of radiative heat transfer problems 

in participating media, PhD Thesis, Mechanical Engineering Department, Indian Institute of 

Technology, Kanpur, India. 

Mishra, S. C., Talukdar, P., Trimis, D. and Durst, F. (2004) Effect of angular quadrature scheme on the 

computational efficiency of the discrete transfer method for solving radiative transport problem with 

participating medium, Numerical Heat Transfer, Part B: Fundamentals, Vol. 46, pp. 463-478.  

Mishra, S. C., Roy, H. K. and Misra, N. (2006), Discrete ordinate method with a new and simple 

quadrature scheme”, Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 101, pp. 249-

262. 



Severno P. C. Marques, Antonio Campo  
International Journal of Thermofluid Science and Technology (2019), Volume 6, Issue 1, Paper No. 19060102 

 

18 

 

Mitalas, G. P. (1968), Calculation ̶̶̶of ̶̶̶transient ̶̶̶heat ̶̶̶flow ̶̶̶through ̶̶̶walls ̶̶̶and ̶̶̶roofs”, ̶̶̶ASHRAE Transactions 

Vol. 74, pp. 182-188. 

Modest, M. F. (2013), Radiative Heat Transfer, 3nd Edition, Academic Press, Oxford, England, UK.  

Press,  W.  H.  et  al.  (1986),    Numerical   Recipes,   Cambridge    University Press,   London, England, 

UK.   

Ratzell III, A. C. and Howell, J. R. (1982), Heat transfer by conduction and radiation in one-dimensional 

planar medium using differential approximation, ASME Journal of Heat Transfer, Vol. 104, pp. 388-

399.  

Shah, N. G. (1979), New method of computational of radiation heat transfer combustion chambers, PhD 

Thesis, Mechanical Engineering Department, Imperial College, London, England, UK. 

Talukdar, P. and Mishra, S. C. (2002), Analysis of conduction-radiation problem in absorbing, emitting 

and anisotropically scattering media using the collapsed dimension method, International Journal of 

Heat and Mass Transfer, Vol. 45, pp. 2159-2168. 

Viskanta, R. and Grosh, R. J. (1962a), Heat transfer by simultaneous conduction and radiation in an 

absorbing medium, ASME Journal of Heat Transfer, Vol. 84, pp. 63-72. 

Viskanta, R. and Grosh, R. J. (1962b), Effect of surface emissivity on heat transfer by simultaneous 

conduction and radiation, International Journal of Heat and Mass Transfer, Vol. 5, pp.729-734. 

Viskanta, R. and Anderson, E. E.  (1975), Heat transfer in semitransparent solids. In Advances in Heat 

Transfer, Irvine, T. E. and Hartnett, J. P. (editors), Vol. 11, pp. 317-441, Academic Press, Oxford, 

England, UK.  


